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Will J. Merry

LECTURE 1

Smooth manifolds

Let us begin with a short history lesson on how you learned to identify

(continuously) differentiable functions.

(i) (High school) A function f : R → R is continuous if its graph

doesn’t have any jumps. The derivative f ′(t) at a point t is the

slope of the graph of f(t) = s at the point t.

(ii) (First class in Analysis) The (ε, δ) definition of continuity. A

function f : R→ R is differentiable at the point r if the limit

lim
s→0

f(t+ s)− f(t)

s

exists. This limit is denoted by f ′(t). The function f is continu-

ously differentiable if t 7→ f ′(t) is itself a continuous function.

(iii) (Second class in Analysis) Now you learned how to handle

functions with more than one variable. Suppose f : Rm → Rn is

a continuous function. Then f is differentiable at p ∈ Rm if there

exists a linear map ` : Rm → Rn (that is, an n × m matrix) such

that

lim
‖ξ‖→0

‖f(p+ ξ)− f(p)− `ξ‖
‖ξ‖

= 0. (1.1)

We denote ` by Df(p). It is the matrix of partial derivatives of

f = (f1, . . . , fn) at the point p = (u1, . . . , um):

Df(p) =


∂f1

∂u1 (p) · · · ∂f1

∂um (p)
...

. . .
...

∂fn

∂u1 (p) · · · ∂fn

∂um (p)


Of course, this reduces to the same definition as before if m = n =

1, since a 1 × 1 matrix is just a number, and in this case Df(p)

is simply multiplication by the number f ′(p). As before, the func-

tion f is continuously differentiable if p 7→ Df(p) is a continuous

function (this is now a function Rm → {n×m matrices} ∼= Rmn).

(iv) (First class in topology) Suppose now X and Y are topological

spaces and f : X → Y is a function. You learned that f is contin-

uous if f−1(U) is an open set in X for every open set U in Y . If X

and Y are metric spaces then this reduces to the old (ε, δ) defini-

tion of continuity. But how does one define differentiability in this

setting? Equation (1.1) does not make sense any more, since in an

arbitrary topological space one cannot simply “add” points, and

there is no such thing as a “linear” map!

Here endeth the history lesson.
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TL;DR:

• It’s easy to differentiate functions on Euclidean spaces.

• Most topological spaces are not Euclideam spaces.

• Bummer.

Indeed, this is a real shame. Measuring the rate at which things

change – that is, differentiating them – is absolutely crucial to all ap-

plications of mathematics (and is arguably the single most important

concept in theoretical physics). However most “real life” systems are

not defined on open sets in Euclidean spaces (the whole point of your

topology course was to introduce classes of spaces appropriate for such

models).

This is where differential geometry comes in. Our first aim is to

define a special type of topological space, called a smooth manifold,

on which it is possible to make sense of differentiating a continuous

function. The definition of a smooth manifold will:

• Include open sets in Euclidean spaces as a special case.

• Be sufficiently general so that the topological spaces that occur

in “real life” systems (in theoretical physics, economics, computer

science, robotics, genetics, cooking etc) are smooth manifolds.

So let’s get started.

In fact, we will define smooth manifolds in two stages. We will first

define a topological manifold, which is a topological space that

locally resembles Euclidean space. We will then endow a topological

manifold with an additional piece of data called a smooth structure.

The smooth structure is what will allow us to actually go ahead and

differentiate things. A topological manifold equipped with a smooth

structure is then called a smooth manifold.

We first recall a few concepts from point-set topology.

Definition 1.1. A topological space X is said to be metrisable if

there exists a metric on X which induces the given topology.

Thus a metrisable topological space is a topological space which is

homeomorphic to a metric space. Non-metrisable topological spaces Exercise: Find examples thereof.

crop up quite frequently in functional analysis and algebraic topol-

ogy. In geometry, however, such spaces are abominations, and we will

exclude them right from the start.

Definition 1.2. A metrisable topological space X is said to be sepa-

rable if there exists a countable dense subset.

It is easy to come up with examples of non-separable metrisable

spaces – for example, an uncountable disjoint union of metrisable

spaces.
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Definition 1.3. A topological space X is said to be locally Eu-

clidean of dimension m if every point has a neighbourhood which is We use the convention that a neigh-

bourhood of a point is an open set
containing that point.

homeomorphic to Rm.

Thus a topological space is locally Euclidean of dimension m if

locally it “looks” like the Euclidean space Rm. We are now ready for

the first key definition of the course.

Definition 1.4. A topological manifold of dimension m is a

separable metrisable topological space which is locally Euclidean of

dimension m.

As already alluded to, the most important part of the definition of

a topological manifold is the locally Euclidean part. Metrisability and

separability are included solely to rule out pathologies. In general the

phrase “topological manifold” means a topological manifold of some

unspecified dimension m.

Convention. We will typically use the letters M , N , and L to denote

manifolds. Unless specified otherwise, the dimension of a manifold

should be assumed to be the corresponding lowercase letter. Thus M

has dimension m, and N has dimension n, and so on.

At the end of this lecture, there is an additional “bonus” sec-

tion that contains additional background information on the

point-set topological properties of manifolds. All of this mate-

rial is non-examinable.

This is a general practice that we will follow throughout the

course: most lectures will conclude with additional bonus ma-

terial, and it will always be non-examinable. There are various

reasons for relegating content to the bonus section:

• it is only tangentially related to the course,

• it is rather technical or difficult,

• it is just a sketch,

• it requires more background knowledge (eg. algebraic topol-

ogy, functional analysis, etc) than the rest of the course

assumes.

In any case, you are welcome to ignore the bonus material.

Remark 1.5. Suppose m 6= n are two non-negative integers. Is it

possible for a topological space to be locally Euclidean of dimension

m and locally Euclidean of dimension n? Equivalently, is Rm home-

omorphic to Rn for m 6= n? The answer to this is “no”, but this is

surprisingly difficult to prove. This result is called the Invariance of

Domain Theorem, and was first proved by Brouwer in 1912. The easi-

est proof uses tools from algebraic topology.
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Examples 1.6. Here are some examples.

(i) Rm is trivially a topological manifold of dimension m. More gen-

erally, any m-dimensional vector space is a topological manifold of We use the convention that all vector

spaces are real and finite dimensional,

unless specified otherwise.
dimension m.

(ii) The open ball

Bm := {p ∈ Rm | ‖p‖ < 1}

is a topological manifold of dimension m. More generally, every

non-empty open subset of a topological manifold of dimension m is

also a topological manifold of dimension m.

(iii) A non-example: The closed unit ball

Dm := {p ∈ Rm | ‖p‖ ≤ 1}

is not a topological manifold of dimension m. In fact, Dm is an It is an illustrative exercise to try and
work out why.example of a more general concept of a manifold with boundary

that we will come back to later in Lecture 21.

We will see more interesting examples later in this lecture.

Let us now get back to the point of view discussed at the beginning

of the lecture: we are trying to develop a class of topological spaces

for which it is possible to differentiate functions on. One might naively

believe that the locally Euclidean condition built into the definition of

a topological manifold is enough. Indeed, to check whether a function

f : Rm → Rn is differentiable at a point p ∈ Rm, we need only examine

f in a small neighbourhood of p – this is clear from (1.1). Thus if we

are given a continuous map between two topological manifolds, we can

locally view it as a continuous map between two Euclidean spaces, and

thus we could conceivably say our original map is differentiable if this

local map is. But herein lies a problem: a topological manifold is only

locally homeomorphic to Euclidean space, and a different choice of

homeomorphism might affect whether the local map is differentiable or

not.

The solution to this is to introduce more structure. Before doing

so, let us recall the chain rule for continuously differentiable functions

between Euclidean spaces. We will give two different versions: one

for the total differential Df(p) (the matrix) and one for the partial

derivatives ∂fi

∂uj .

Proposition 1.7 (The Chain Rule). Let O ⊂ Rm, Ω ⊂ Rn be open

sets. Let f : O → Rn and g : Ω → Rl be continuously differentiable

functions satisfying f(O) ⊂ Ω.

(i) The function g ◦ f is also continuously differentiable, and its deriva-

tive at the point p is given by

D(g ◦ f)(p) = Dg(f(p)) ◦Df(p).

(ii) Write (u1, . . . , um) for the coordinates on Rm and (v1, . . . , vn)

for the coordinates on Rn, and write f = (f1, . . . , fn) and g =
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(g1, . . . , gl). Then the partial derivatives of g ◦ f are given by

∂(gi ◦ f)

∂uj
(p) =

n∑
k=1

∂gi

∂vk
(f(p))

∂fk

∂uj
(p), for all 1 ≤ i ≤ l, 1 ≤ j ≤ m.

We now define higher order derivatives.

Definition 1.8. Let O ⊂ Rm and Ω ⊂ Rm be open sets and suppose

f : O → Ω is a differentiable map. We say that f is of class Ck if each

partial derivative ∂fi

∂uj is an (k − 1)-times continuously differentiable

function. We say that f is smooth or of class C∞ if f is of class Ck

for every k ≥ 1. If f is both smooth and bijective and the inverse

function is also smooth then we say that f is a diffeomorphism.

It follows from part (ii) of Proposition 1.7 that the composition of

smooth functions defined on open sets in Euclidean spaces is again a

smooth function.

Remark 1.9. If f is a diffeomorphism then necessarily m = n. This

follows immediately from part (i) of Proposition 1.7, which tells us

that if f is a diffeomorphism then Df(p) is an invertible matrix. (Its

inverse is given by D(f−1)(f(p)).) An n × m matrix can only be

invertible if m = n. Thus in particular Rm cannot be diffeomorphic to

Rn for m 6= n (compare to Remark 1.5).

With these preliminaries in hand, let us get started on the defini-

tion of a smooth manifold.

Definition 1.10. Let M be a topological manifold of dimension m. A

smooth atlas on M is a collection

X = {xa : Ua → Oa | a ∈ A}

where {Ua | a ∈ A} is an open cover of M , each Oa is an open set

in Rm, and each xa : Ua → Oa is a homeomorphism such that the

following compatibility condition is satisfied: Suppose a, b ∈ A are such

that Ua ∩ Ub 6= ∅. Then the composition

xb ◦ x−1
a : xa(Ua ∩ Ub)→ xb(Ua ∩ Ub)

should be a diffeomorphism. This makes sense, since both xa(Ua ∩ Ub)
and xb(Ua ∩ Ub) are open subsets of Rm. We call the maps xa the

charts of the atlas X, and the compositions xb ◦ x−1
a the transition

functions of the atlas.

Convention. We typically denote points in manifolds by the letters p

and q, and charts on manifolds by the letters x and y. The phrase “let

(U, x) be a chart about p” is short for: let x : U → O be a chart on M

with p ∈ U .

We say that two smooth atlases X and Y are equivalent if their

union is also a smooth atlas, that is, if given any chart x of X and any

chart y of Y such that the domains of x and y intersect, the composi-

tion y ◦ x−1 is also a diffeomorphism. It is immediate that this notion

defines an equivalence relation on the set of smooth atlases on a given

topological manifold.
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Definition 1.11. A smooth structure on a topological manifold is

an equivalence class of smooth atlases.

Remark 1.12. Given an equivalence class of smooth atlases, there is

a unique maximal smooth atlas in that class (simply take the union of

all the atlases in the given equivalence class). Thus there is a one-to-

one correspondence between smooth structures and maximal smooth

atlases. Since dealing with equivalence relations can be tedious, it is

usually more convenient to regard a smooth structure as a maximal

smooth atlas, and we will do so without further comment.

We now finally arrive at the main definition of this first lecture.

Definition 1.13. A smooth manifold of dimension m is a pair

(M,X) where M is a topological manifold of dimension m and X is a

smooth structure on M .

Since a smooth atlas is contained in a unique maximal smooth

atlas, it is sufficient when defining a smooth manifold to specify a

smooth atlas on the underlying topological manifold. Whenever pos-

sible we will omit the X from the notation and just write M . For

smooth manifolds the fact that the dimension is well-defined is much

easier than for topological manifolds (we only need Remark 1.9, which

does not require any algebraic topology).

Example 1.14. The standard smooth structure on Rm is the one

containing the smooth atlas consisting of exactly one chart: the iden-

tity map id: Rm → Rm. The reason for the word “standard” will

become clear by the end of the lecture. More generally, if V is any m-

dimensional real vector space, then the standard smooth structure on Exercise: Why is this independent of

the choice of `?V is the one induced by the smooth atlas consisting of a single chart

` : V → Rm, where ` is some linear isomorphism.

Just as with topological manifolds, an open subset of a smooth

manifold is also a smooth manifold:

Lemma 1.15. Let M be a smooth manifold of dimension m and let

W ⊂ M be a non-empty open set. Then W naturally inherits the

structure of a smooth manifold of dimension m.

Proof. We have already remarked in part (i) of Example 1.6 that W is

a topological manifold of dimension m. Let X = {xa : Ua → Oa | a ∈ A}
be a smooth atlas on M . Then

{xa|W∩Ua : W ∩ Ua → xa(W ∩ Ua) ⊂ Oa | a ∈ A}

is a smooth atlas for W .

Thus any open subset of a vector space is a smooth manifold. Let

us now consider a slightly less trivial example. Recall we denote by

Sm the unit sphere:

Sm :=
{
p ∈ Rm+1 | ‖p‖ = 1

}
.

Proposition 1.16. The sphere Sm is a compact smooth manifold of See Definition 1.28 for the definition

of compact.dimension m.
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Proof. We give Sm the subspace topology from Rm+1. Then Sm is

certainly a separable and metrisable. We will directly exhibit a smooth

atlas on Sm (thus proving at the same time that Sm is a topological

manifold). Let pN = (0, . . . , 0, 1) denote the “north pole” and let

pS := (0, . . . , , 0,−1) denote the “south pole”. Let UN = Sm \ {pN}
and US := Sm \ {pS}. Then {UN , US} is an open cover of S,. Define

charts

xN : UN → Rm, xN (u1, . . . , um+1) :=
1

1− um+1
(u1, . . . , um)

and

xS : US → Rm, xS(u1, . . . , um+1) :=
1

1 + um+1
(u1, . . . , um).

The maps xN and xS are stereographic projection from the north and

south pole respectively. Both the transition maps

xN ◦ x−1
S : Rm \ {0} → Rm \ {0},

xS ◦ x−1
N : Rm \ {0} → Rm \ {0}

are given by

(u1, . . . , um) 7→ 1∑m
i=1(ui)2

(u1, . . . , um)

which is obviously a diffeomorphism. Thus we have defined a smooth

atlas on Sm. We refer to this smooth structure as the standard

smooth structure on Sm.

All we really needed to do in the previous proof was check differ-

entiability of the transition function xN ◦ x−1
S . This is because (as a

subset of Rm+1), Sm already carried a nice topology. Sometimes how-

ever we will want to build a smooth manifold “from scratch”. For this,

the next result is very useful.

Proposition 1.17 (Constructing smooth manifolds). Let M be a

set. Suppose we are given a collection {Ua | a ∈ A} of subsets of M

together with bijections xa : Ua → Oa, where Oa is an open subset of

Rm. Assume in addition that:

(i) For any a, b ∈ A, xa(Ua ∩ Ub) is open in Rm.

(ii) If Ua ∩ Ub 6= ∅, the map xb ◦ x−1
a : xa(Ua ∩ Ub) → xb(Ua ∩ Ub) is a

diffeomorphism.

(iii) Countably many of the Ua cover M .

(iv) If p 6= q are points in M then either there exists a such that p and

q both belong to Ua, or there exists a, b with Ua ∩ Ub = ∅ such that

p ∈ Ua and q ∈ Ub.

Then M has a unique smooth manifold structure for which the collec-

tion {xa : Ua → Oa | a ∈ A} is a smooth atlas.

The proof is essentially trivial: we simply took the definition of a

smooth manifold and inserted it into the hypotheses.
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Proof. Define a topology on M by declaring all the xa to be home-

omorphisms. That this is well-defined topology follows from the fact

that the xa are bijections, together with (i) and (ii). The locally Eu-

clidean property is then immediate. Properties (iii) and (iv) guarantee

this topology is metrisable and separable, thus turning M into a topo-

logical manifold. Finally the fact that {xa : Ua → Oa | a ∈ A} is a

smooth atlas on M is clear from (ii).

Remark 1.18. Historically, a manifold M (smooth or topological) was

called open if M was non-compact and closed if M was compact. This

however is bad terminology for two reasons:

(i) Thought of as an abstract topological space, every manifold is both

open and closed! (This is true of any topological space.)

(ii) If however our given manifold M is a subspace of a larger space

N , then it does make sense to ask whether M is open or closed in

the subspace topology of N . For example, the unit ball Bm is open

in Rm and the unit sphere Sm is closed in Rm+1. Historically, all

manifolds were thought of as subspaces – actually submanifolds – We will define submanifolds precisely
in Lecture 5.of some Euclidean space Rm, and in fact any manifold can be em-

bedded inside Euclidean space. However even then the terminology In the smooth case, this is known as

the Whitney Embedding Theorem,
which we will prove in Lecture 7.

“open” and “closed” does not make sense! For instance, if we iden-

tify R2 with the set of points in R3 whose last coordinate is zero

then R2 is closed as a subspace of R3, but R2 is not compact as a

manifold.

Thus throughout this course, we will only use the words “open” and

“closed” in their topological context (i.e. to speak of open sets and

closed sets). If we wish to indicate a given manifold is compact, we

will use the rather more logical terminology “compact manifold”.

The only caveat to this is that when we define (both smooth and

topological) manifolds with boundary later on (Lecture 21), we will

need to differentiate between the terms “compact manifold with

boundary” and “compact manifold without boundary”. Indeed, as

we have already mentioned, the closed unit ball Dm is an example of a

compact smooth manifold with boundary.

On Problem Sheet A there are many more examples (and non-

examples) of smooth manifolds for you to play with. Going back to

the general theory, we have now achieved the goal we set out at the

beginning of the lecture: to come up with an appropriate class of

topological spaces for which it makes sense to say whether a map is

differentiable or not.

Definition 1.19. Let ϕ : M → N be a continuous map between

two smooth manifolds. We say that ϕ is of class Ck if for every point

p ∈ M , if (U, x) is any chart on M with p ∈ U and (V, y) is any chart

on N with ϕ(U) ⊂ V , the composition

y ◦ ϕ ◦ x−1 : x(U)→ y(V )
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is of class Ck. If ϕ is of class Ck for all k then we say ϕ is smooth

(or of class C∞). If ϕ is smooth and bijective and the inverse function

N →M is also smooth then ϕ is said to be a diffeomorphism.

It follows from the definition of smooth atlases that it does not See Problem A.1.

matter which charts we use to check differentiability (i.e. we could

replace “any chart” with “every chart” above).

Examples 1.20.

(i) If (M,X) is a smooth manifold and x : U → O belongs to X, then if

we think of U and O as smooth manifolds in their own right (using

Lemma 1.15 and Example 1.14) then x is a diffeomorphism.

(ii) Similarly if W ⊂ M is any open set (endowed with the smooth

structure from Lemma 1.15) then the inclusion map ı : W ↪→ M is a

smooth map.

The next result also follows immediately from the chain rule in

Euclidean spaces (Proposition 1.7).

Proposition 1.21. Let M,N and L be smooth manifolds, and sup-

pose ϕ : M → N and ψ : N → L are smooth maps. Then ψ◦ϕ : M → L

is smooth.

Proof. Let p ∈ M . Let (U, x) be a chart on M containing p, let (V, y)

be a chart on N containing ϕ(p), and let (W, z) be a chart on L con-

taining ψ(ϕ(p)). We want to show that the composition z◦(ψ◦ϕ)◦x−1

is smooth where defined. But

z ◦ (ψ ◦ ϕ) ◦ x−1 =
(
z ◦ ψ ◦ y−1

)
◦
(
y ◦ ϕ ◦ x−1

)
,

and by assumption each of the two bracketed terms on the right-hand

side is a smooth map. Since the composition of smooth maps (defined

on open sets in Euclidean space) is smooth, the left-hand side is also

smooth.

Remark 1.22. Consider the following curiosity. We have defined

what it means for a continuous map between two smooth manifolds

to be differentiable (Definition 1.19), but we have not defined what

the derivative Dϕ(p) is yet! This is somehow backwards – in normal

calculus one first defines the derivative Df(p) and then says the map

is differentiable if the derivative Df(p) always exists. In fact, the

definition of the derivative of a map between two smooth manifolds is

a little tricky, and this is what we will do in the next three lectures.

A smooth structure is defined as an equivalence class of smooth

atlases. We can take this one step further and look at equivalence

classes of smooth structures.

Definition 1.23. We say that two smooth structures X1 and X2 on

a given topological manifold M belong to the same diffeomorphism

class if there exists a diffeomorphism (M,X1) → (M,X2). This is

clearly another equivalence relation. We write S(M) for the set of

diffeomorphic classes of smooth structures on M .
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Example 1.24. As an example to show that smooth structures and

diffeomorphism classes really are different concepts, take M = R.

Let X denote the maximal smooth atlas containing the chart t 7→ t3.

On Problem Sheet A you will check that this is not the same smooth

structure as the standard one described in Example 1.14. However,

there is an obvious diffeomorphism between the two smooth structures

(namely, t 7→ t3). Thus they belong to the same diffeomorphism class.

Remark 1.25. Does every topological manifold admit a smooth struc-

ture (i.e. can every topological manifold be turned into a smooth

manifold)? Can a topological manifold admit more than one diffeo-

morphism class? These questions are typically very hard to solve (and

there are many open problems). Here are some interesting facts, all of

which are way too hard to prove in this course.

(i) If M is a topological manifold of dimension 0,1,2 or 3 then S(M)

consists of exactly one element.

(ii) In higher dimensions, there may be more than one diffeomorphism

class. For example, S(S7) has exactly 28 elements (15 if one ignores

orientations), and there are more than sixteen million different

elements in S(S31)! On the other hand. S(S61) consists of exactly

one element, but for any odd number m ≥ 63, one has #S(Sm) ≥ 2.

(iii) For any m 6= 4, Rm admits a unique diffeomorphism class. However

S(R4) has infinitely many elements. In general the most “wild”

phenomena occur in dimension 4.

(iv) There exist topological manifolds that do not admit any smooth

structures at all: S(M) = ∅.

Bonus Material for Lecture 1

Defining topological manifolds as separable metrisable spaces that are

locally Euclidean has the advantage of being concise, but in practice it

can be hard to check. In this bonus section we recall some additional

material from point-set topology, and explore alternative ways to

define topological manifolds.

Definition 1.26. Let X be a topological space. We say that X is

Hausdorff if for every pair p 6= q of points in X, there are open

subsets U, V ⊂ X such that p ∈ U , q ∈ V and U ∩ V = ∅.

Any metrisable space is Hausdorff.

Definition 1.27. A topological space X is said to be connected

if it is not the disjoint union of nonempty open sets. A topological

space X is said to be path connected if for any two points p, q ∈ X A path connected space is connected,
but the converse need not hold.there exists a continuous map γ : [0, 1] → X such that γ(0) = p and

γ(1) = q.
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In general any topological space can be decomposed into its con-

nected components (resp. path components), where the con-

nected component (resp. path component) containing a given point x

is the union of all the connected (resp. path connected) sets containing

x.

Recall that an open cover of a topological space X is a collec-

tion {Ua | a ∈ A} of open subsets of X, where A is some index set,

such that X =
⋃
a∈A Ua. If the index set A is a finite set, we say

that the open cover is a finite cover. A subcover of an open cover

{Ua | a ∈ A} consists of a subset A′ ⊂ A such that the collection

{Ua | a ∈ A′} is still an open cover.

Definition 1.28. Let X be a topological space. We say that X is

compact if every open cover has a finite subcover.

Compact spaces are typically the most “useful” class of topological

spaces, in the sense that many powerful theorems only hold for com-

pact spaces. Unfortunately, since manifolds include Euclidean spaces A subset K ⊂ Rm is compact if and

only if it is closed and bounded – this
is the Heine-Borel theorem.

as a special case, they are certainly not always compact.

We therefore introduce a weaker condition, which requires two more

preliminary definitions about covers. Suppose {Ua | a ∈ A} is an open

cover. A refinement is another open cover {Vb | b ∈ B} with the

property that for every b ∈ B there exists a ∈ A such that Vb ⊂ Ua.

Next, an open cover {Ua | a ∈ A} of X is said to be locally finite if

for every x ∈ X there exists a neighbourhood W of x such that the set

{a ∈ A | Ua ∩W 6= ∅} is a finite set.

Definition 1.29. A topological space X is said to be paracompact

if every open cover has a locally finite refinement.

Thus compact spaces are obviously paracompact, but the latter is

more general. For instance, Rm is paracompact, but as we have just

observed, not compact. In fact, the following result holds.

Theorem 1.30. Every metrisable space is paracompact.

If X is a topological space then a basis for the topology on X is a

set B of open sets of X with the property that every open set in X is

a union of sets in B.

Definition 1.31. A topological space is said to be second countable A metrisable space is second count-

able if and only if it is separable
(consider balls of rational radii).

if it admits a countable basis.

The following proposition gives two alternative characterisations of

topological manifolds, which often are easier to verify.

Proposition 1.32. Let M be a locally Euclidean topological space.

The following are equivalent:

(i) M is a topological manifold.

(ii) M is Hausdorff, paracompact, and has at most countably many

connected components.

https://en.wikipedia.org/wiki/Heine\OT1\textendash Borel_theorem
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(iii) M is Hausdorff and second countable.

Here are some more point-set topology definitions.

Definition 1.33. A topological space is said to be Lindelöf if every Clearly compact ⇒ Lindelöf.

open cover has a countable subcover.

Any locally compact paracompact space with at most countably

many components is Lindelöf.

Definition 1.34. A topological space X is normal if given any two If {x} is closed for all x in X then

normal ⇒ Hausdorff.closed disjoint subsets K1,K2 of X there are open sets U1, U2 of X

such that Ki ⊂ Ui for i = 1, 2 and U1 ∩ U2 = ∅.

Every paracompact Hausdorff space is normal.

Definition 1.35. A topological space X is said to be locally com-

pact if for every point p ∈ X there exists a compact set K and a Clearly compact ⇒ locally compact.

neighbourhood U of x such that U ⊂ K.

If the topological space is Hausdorff, this is equivalent to asking

that every point has a neighbourhood with compact closure.

Definition 1.36. A topological space X is locally path connected For a locally path connected space,
the path components and the con-

nected components coincide.
if for every point p ∈ X and every neighbourhood U of p, there exists

a path connected neighbourhood V of p with V ⊂ U .

Topological manifolds enjoy all of these properties.

Proposition 1.37. Topological manifolds are normal Lindelöf spaces

which are both locally compact and locally path connected. Moreover

a topological manifold is connected if and only if it is path connected.

We conclude this lecture with another somewhat esoteric remark

about infinite-dimensional manifolds. This is for interest only – we

will not use infinite-dimensional manifolds in this course.

Definition 1.38. Fix a Banach space E. We say that a topological

space X is locally modelled on E if every point in X has a neigh-

bourhood which is homeomorphic to an open set in E.

Definition 1.39. A topological Banach manifold is a separable Since any Euclidean space is a Banach
space, any topological manifold is also

a topological Banach manifold.
metrisable topological space which is locally modelled on some Banach

space E.

A smooth Banach manifold is defined similarly – here we use the

fact that differentiating functions on Banach spaces works in exactly

the same way as differentiating functions on Euclidean spaces.

You should compare this to how you initially learned linear alge-

bra. To begin with all vector spaces were finite-dimensional and linear

operators were just matrices. Then two years later they told you that

actually things could be infinite-dimensional. All the theorems you

knew and loved from linear algebra continued to hold (provided a few

more assumptions were made), only the proofs were much harder and

it was no longer called “linear algebra”, it was called “functional anal-

ysis”. The same is true in differential geometry – infinite-dimensional

differential geometry is sometimes referred to as “global analysis”.
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Example 1.40. As a concrete example of an infinite-dimensional

manifold, let M and N be two finite-dimensional smooth manifolds,

and let 0 ≤ k < ∞. Then the space Ck(M,N) of maps from M to N

of class Ck is an infinite-dimensional Banach manifold.

A constant thorn in the side of global analysists is the fact that This is because C∞(Rm,Rn) is not a

Banach space.the space C∞(M,N) of smooth maps from M to N is not a Banach

manifold.



Will J. Merry

LECTURE 2

Tangent Spaces

The goal of the next few lectures is to associate to an m-dimensional

smooth manifold an m-dimensional vector space, denoted by TpM ,

to each point p ∈ M . We call TpM the tangent space to M at p.

Although it won’t be immediate from the definition why, the tangent

space is what you would naturally “guess” it would be. See Figure 2.1

for the case of S2 (which should be thought of as sitting inside R3).

Figure 2.1: The tangent space

to S2 at a point p

We will use this construction to define the derivative of a smooth

map ϕ : M → N : this will be a linear map Dϕ(p) : TpM → Tϕ(p)N

for each p ∈ M . In Lecture 5 we will “glue” the vectors spaces to-

gether to form one larger space called the tangent bundle of M .

This will be smooth manifold of twice the dimension of M . A smooth

map ϕ : M → N will then induce a smooth map Dϕ : TM → TN . In

Lecture 6 we will look at submanifolds – it will not be until then that

we can rigorously prove that the tangent space we define in this lec-

ture really is the actual “tangent space” as in Figure 2.1 (cf. Example

6.16).

Definition 2.1. A smooth function on a manifold is a smooth map

f : M → R in the sense of Definition 1.19, where R is given the stan-

dard smooth structure from Example 1.14. Thus f is a smooth func-

tion if for any chart x : U → O on M , the composition f ◦ x−1 : O → R
is a smooth function (in the normal sense).

Convention. We typically use the symbols ϕ,ψ to denote smooth

maps from one manifold to another, and f, g for smooth maps from a

manifold to a Euclidean space.

We denote by C∞(M) the space of smooth functions. If W ⊂ M That is, a vector space where you can
also multiply two elements together.is an open set, we define C∞(W ) to be the space of smooth functions

that are only defined on W (where W is thought of as a smooth man-

ifold in the sense of Lemma 1.15). The space C∞(M) is an algebra

(and thus in particular a ring and a vector space), under the opera-

tions We will always write ◦ to denote

composition, meanwhile juxtaposition
indicates the pointwise product. See

Definition 19.18 if you are unfamiliar
with algebras.

(f + g)(p) := f(p) + g(p), (fg)(p) := f(p)g(p),

and (cf)(p) := cf(p) for c ∈ R.

Before going any further, let us go back to Rm and introduce some

more notation. To begin with, this will feel somewhat redundant, but

we will see next lecture that it makes the various formulae easier to

understand. Slightly abusively, we denote by ui : Rm → R the function

(u1, . . . , um) 7→ ui. (2.1)

Let ei denote the ith standard basis vector in Rm, so that

ui(ej) = δij , (2.2)

Last modified: July 17, 2021.

https://www.merry.io


2

where δji is the Kronecker delta defined by

δji =

1, i = j,

0, i 6= j.

Now suppose f : O ⊂ Rm → Rn is a smooth map defined on an open

subset O of Rm. If p ∈ O and ξ ∈ Rm then the vector Df(p)ξ can be

thought of as the partial derivative of f in the direction ξ:

Df(p)ξ = lim
t→0

f(p+ tξ)− f(p)

t
.

Definition 2.2. We abbreviate Df(p)ej by Djf(p):

Djf(p) = Df(p)ej = lim
t→0

f(p+ tej)− f(p)

t
.

Let us summarise the various different ways we can write the

derivative:

Let f : O ⊂ Rm → Rn be a smooth map, and let p ∈ O. Then:

• Df(p) is a n×m matrix.

• Djf(p) is an element of Rn. It is the jth column of the

matrix Df(p).

• D(ui ◦ f)(p) is a linear map from Rm to R. One can think of

it as the ith row of the matrix Df(p).

• Dj(u
i ◦ f)(p) is a number. It is the (i, j)th entry of the matrix

Df(p).

In more familiar notation

Dj(u
i ◦ f)(p) =

∂f i

∂uj
(p). (2.3)

In general we will prefer the slightly more cumbersome expression on

the left-hand side of (2.3). This is because next lecture the symbol ∂
∂xi

will take on a special meaning, cf. Example 3.6.

Remark 2.3. In our new notation, part (ii) of the chain rule in Eu-

clidean spaces (Proposition 1.7) reads:

Dj(u
i ◦ g ◦ f)(p) =

n∑
k=1

Dk(ui ◦ g)(f(p))Dj(u
k ◦ f)(p).

Going back to manifolds, we can use the (ui) to give examples of

smooth functions.

Example 2.4. If x : U → O is a chart on M , for each i = 1, . . . ,m the

function ui ◦ x is a smooth function on U .

This type of smooth function is especially important, so it gets its

own special name.
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Definition 2.5. If p ∈ M and x is a chart defined on a neighbour-

hood of p then we write

xi := ui ◦ x.

We call the functions (xi) the coordinates of the chart x, and we say

that the (xi) are local coordinates about p.

We use the convention that the local coordinates of a chart are

always written with the same letter: thus if y is another chart then

yi := ui ◦ y. Since the local coordinates uniquely determine the chart,

this convention also works backwards. Thus the phrase “let (zi) be

local coordinates about p” is shorthand for: let z be a chart on M

containing p, and set zi := ui ◦ z.

Remark 2.6. Consider Rm as a smooth manifold with the single chart

id : Rm → Rm (cf. Example 1.14). Then the local coordinates of id are

simply the (ui).

Let us say a few words on the philosophy behind the notation,

which may help you in lectures to come.

Differential Geometry is essentially a way of formalising calcu-

lus so that it makes sense on smooth manifolds. The formalism

is designed to make things “look” as similar as possible to cal-

culus on Euclidean space. This means that if you are ever stuck

when trying to compute something (for instance, a derivative),

you can just “pretend” that everything is actually defined on

Euclidean space, and then simply follow the normal rules of

multivariable calculus. Magically, it just works!

Definition 2.7. Let M be a smooth manifold and let p ∈ M . Let

U and V be two neighbourhoods of p, and suppose f ∈ C∞(U) and

g ∈ C∞(V ). We say that f and g have the same germ at p if there

exists a smaller neighbourhood W ⊂ U ∩ V of p such that

f |W ≡ g|W .

One can think of this as follows: define an equivalence relation on the

set of smooth functions defined on a neighbourhood of p by saying

that (U, f) ∼ (V, g) if there exists a neighbourhood W ⊂ U ∩ V
such that f |W ≡ g|W . A germ is then an equivalence class under this

relation. We denote the germ by f and we let FpM denote the set of

germs at p.

In fact, FpM is another algebra. We can add germs together: if f

and g are two germs with representatives (U, f) and (V, g) respectively,

then f + g is the germ represented by (U ∩ V, f + g). Similarly f g is

the germ represented by (U ∩ V, fg), and for a real number c, cf is the

germ represented by (U, cf). We denote by c the germ of any function

which is constant and equal to c in a neighbourhood of p. The map

R→ FpM given by c 7→ c is then an inclusion of algebras.
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A germ at p has a well-defined value at p (although nowhere else),

and this gives us map In fact, FpM is a local ring; see

Lemma 2.15.

evalp : FpM → R, evalp(f) := f(p), (2.4)

where (U, f) is any representative of f . The next example motivates

the approach we will take to tangent vectors.

Example 2.8. Let f : O → R be smooth, where O ⊂ Rm is open.

Let p ∈ O and ξ ∈ Rm. The usual interpretation of the derivative

is that the matrix Df(p) eats the vector ξ to produce a real number

Df(p)ξ. However we could flip this on its head and think of (p, ξ) as

being fixed, and instead let f vary. To this end, let us denote by

ξp : C∞(O)→ R, ξp(f) := Df(p)ξ.

It follows from equation (1.1) that differentiability is a local property, The formal definition of a “local

property” will come in Lecture 16.in the sense that the value of ξp(f) depends only on the germ of f at

p. Thus we can think of ξp as defining a linear map

ξp : FpO → R, ξp(f) := Df(p)ξ

(here we are thinking of O as a smooth manifold). In fact, the map

ξp : FpO → R is not just any linear map, it is also a derivation in the

sense that

ξp(f g) = evalp(f)ξp(g) + evalp(g)ξp(f).

Indeed, this is just a fancy way of expressing the Leibniz rule:

D(fg)(p)ξ = f(p)Dg(p)ξ + g(p)Df(p)ξ.

Following Example 2.8, we define a tangent vector as a derivation

on the space of germs.

Definition 2.9. Let M be a smooth manifold and let p ∈ M . A

tangent vector at p is a linear map

ξ : FpM → R

which satisfies the derivation property :

ξ(f g) = evalp(f)ξ(g) + evalp(g)ξ(f).

Convention. We typically denote tangent vectors with the symbols

ξ, ζ.

Since a tangent vector is a linear map from the vector space FpM
to R, the set of tangent vectors is itself a vector space, and we denote

it by TpM .

The next observation follows directly from the definition:

Lemma 2.10. Let M be a smooth manifold and let W ⊂ M be a non-

empty open set. Regard W as a smooth manifold in its own right, as

in Lemma 1.15. Then for any p ∈ W there is a canonical identification

TpM = TpW .
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Proof. Since W is open it there is a canonical isomorphism FpM ∼=
FpW .

Here is an easy lemma about derviations.

Lemma 2.11. Suppose ξ : FpM → R is a tangent vector at p and

c ∈ FpM is a constant germ. Then ξ(c) = 0.

Proof. Since c = c 1 we have ξ(c) = c ξ(1) by linearity. But by the

derivation property:

ξ(1) = ξ(1 1) = 2 evalp(1)ξ(1) = 2 ξ(1)

and thus ξ(1) = 0. Thus also ξ(c) = 0.

In the special case where O ⊂ Rm is an open set, Example 2.8

showed that every vector ξ ∈ Rm defines an element of ξp ∈ TpO (in

the sense of Definition 2.9). In fact, these are all the elements of TpO,

although this requires a bit of work to see. More generally, one has:

Theorem 2.12. Let M be a smooth manifold of dimension m and let

p ∈M . Then the vector space TpM has dimension m.

Theorem 2.12 is not immediate. Indeed, from Definition 2.9 it is

not remotely clear why TpM should even be finite-dimensional! We

will prove Theorem 2.12 in the next lecture by explicitly finding a

basis of TpM .

Bonus Material for Lecture 2

In this bonus section we explore two further properties of the algebras

C∞(M) and FpM .

Lemma 2.13. Let M be a manifold of dimension m > 0, and let W ⊂
M be a non-empty open set. Then as a real vector space, C∞(W ) is

always infinite-dimensional.

Proof. Let f ∈ C∞(W ) be any smooth function which is not constant If you are worried why such a function
exists, use Lemma 3.2 from the next

lecture.
on some connected component of W . Then f(W ) is an infinite subset

of R (since it contains an interval).

Consider now the vector space R[t] of all polynomials. This is an

infinite-dimensional vector space – a basis is the set of monomials{
tk | k ≥ 0

}
. Any polynomial P (t) is completely determined by its

values on an infinite set, and thus if P ∈ R[t] then P is completely

determined by its values on f(W ). Therefore

{P ◦ f | P ∈ R[t]} ⊂ C∞(W )

is an infinite-dimensional subspace of C∞(W ).

Now for some abstract ring theory. This material is not remotely

relevant to the course, so ignore it if the terms are not familiar.
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Definition 2.14. A ring is said to be a local ring if it contains a

unique maximal left ideal.

Lemma 2.15. The ring FpM is a local ring.

Proof. The map evalp : FpM → R from (2.4) is clearly a ring homo-

morphism. Thus the kernel of evalp is an ideal in the ring FpM . Since

the map evalp is surjective (as evalp(c) = c), this is actually a maximal

ideal. In fact, it is the unique maximal ideal, since if eval(f) 6= 0 then

f is invertible in FpM . Indeed, if (U, f) is a representative of f then

there exists V ⊂ U such that f is never zero on V . Thus there is a

well-defined function g := 1/f : V → R, and g is then an inverse to f .

This completes the proof.



Will J. Merry

LECTURE 3

Partitions of Unity

We begin this lecture by reformulating the definition of a tangent

vector in a slightly more convenient way. Since germs are defined via

equivalence classes, they are often tedious to work with, and we would

like to dispense with them.

Definition 3.1. Let M be a smooth manifold, let p ∈ M , and let

W be any neighbourhood of p (for instance W could be all of M). A

derivation of C∞(W ) at p is a linear map ζ : C∞(W ) → R which

satisfies the derivation property

ζ(fg) = f(p)ζ(g) + g(p)ζ(f).

If ξ ∈ TpM then ξ naturally defines a derivation ζ of C∞(W ) for

any open W containing p by setting

ζ(f) := ξ(f). (3.1)

In fact, the converse is also true, as we will prove in Proposition 3.3

below. First we need a preliminary lemma. To state it, recall that for

a smooth function f : M → R, we denote by supp(f) the support of

f , defined by:

supp(f) := {p ∈M | f(p) 6= 0}.

Lemma 3.2 (Bump functions). Let M be a smooth manifold and let

K ⊂ U be subsets, where K is closed and U is open. Then there exists

a smooth function χ : M → R such that:

(i) 0 ≤ χ(p) ≤ 1 for all p ∈M ,

(ii) supp(χ) ⊂ U ,

(iii) χ(p) = 1 for all p ∈ K.

A function χ satisfying the three conditions of Lemma 3.2 is called

a bump function. The proof of Lemma 3.2 will be carried out at

the end of this lecture, when we discuss partitions of unity. It is

not obvious—as we will see this is the main reason we imposed the

additional point-set topological conditions (metrisable and separable)

on top of the locally Euclidean property.

Proposition 3.3. Let M be a smooth manifold, let p ∈ M , and let

W be any neighbourhood of p. Then there is a linear isomorphism

between TpM and the space of derivations of C∞(W ) at p.

Proof. Let W be a neighbourhood of p. We prove the result in three

steps.

1. Let ζ : C∞(W ) → R be a derivation at p. Suppose f ∈ C∞(W )

is identically zero on a neighbourhood V ⊂ W of p. We claim that

Last modified: July 17, 2021.
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ζ(f) = 0. For this, choose a bump function χ : M → R such that That is, apply Lemma 3.2 with K =

{x} and “U” equal to V .χ(p) = 1 and supp(χ) ⊂ V . Let g = χf , thought of as a function

W → R. Then g is identically zero, and hence ζ(g) = 0 by linearity.

But by the derivation property

ζ(g) = ζ(χf)

= χ(p)ζ(f) + f(p)ζ(χ)

= ζ(f)

since χ(p) = 1 and f(p) = 0. Thus ζ(f) = 0.

2. Suppose now f ∈ FpM . We claim that we can always find a

representative for f with domain W , i.e. a smooth function g : W → R
such that g = f . For this, let (V, f) be any representative of f . By

shrinking V if necessary, we may assume that V ⊂ W . Now choose a

smaller neighbourhood U of p with U ⊂ V ⊂ W . Our goal now is to

extend f to a smooth function g defined on W such that g|U = f . For

this, we apply Lemma 3.2 again, this time with K = U and “U” equal

to V . Now consider the smooth function The existence of such a set U follows

from the fact M is metrisable.

g : W → R, g(p) :=

χ(p)f(p), x ∈ V,
0, x ∈W \ V.

Since g|U = f , we certainly have g = f .

3. We now complete the proof. Let ζ : C∞(W ) → R be a deriva-

tion at p. We define a linear map ξ : FpM → R by setting

ξ(f) := ζ(f), where (W, f) is any representative of f.

That such a representative (W, f) exists was the content of Step 2, and

the fact that ξ is well-defined follows from Step 1. Indeed, if (W,h)

was another representative of f then by assumption there exists a

smaller neighbourhood V of p such that f |V ≡ h|V . Then by linearity

ζ(f) − ζ(h) = ζ(f − h) and ζ(f − h) = 0 by Step 1. Finally, it is clear

that ξ is a derivation. This association ζ 7→ ξ obviously inverts (3.1),

and thus this completes the proof.

Thanks to Proposition 3.3, we will from now always regard a tan-

gent vector ξ as a derivation of C∞(W ) at p for any open W con-

taining p. We emphasise that Proposition 3.3 implies that it doesn’t

matter which W we choose. Typically we take W either to be the do-

main of a chart, or the whole manifold M . The next statement is a

reformulation of Lemma 2.11 (or alternatively Step 1 of Proposition

3.3).

Corollary 3.4. Let M be a smooth manifold, let p ∈ M , and let

f ∈ C∞(W ) for some open W containing p. If f is constant in a

neighbourhood of p then ξ(f) = 0 for all ξ ∈ TpM .

Remark 3.5. Given Proposition 3.3, you may wonder why we didn’t

immediately define TpM as the vector space of derivations of C∞(M)

at p. There are (at least) four reasons:
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(i) Using germs better encapsulates the fact that differentiation is a

local property.

(ii) An advantage of the germ approach was that Lemma 2.10 is tau-

tological; if we had defined TpM directly as derivations of C∞(M)

at p then Lemma 2.10 would have required proof — namely, one

would have had to directly show that derivations of C∞(M) at p

are isomorphic to derivations of C∞(W ) at p. This is essentially the

statement of Proposition 3.3, and thus we wouldn’t have saved any

time by avoiding germs.

(iii) In certain other geometric categories, the analogue of Lemma 3.2

is false. For instance, there is an analogous theory of analytic

manifolds, which are defined in exactly the same way as smooth

manifolds, except the word “smooth” should be replaced with “real-

analytic” everywhere (thus an analytic manifold has a real-analytic

atlas, and maps between real-analytic manifolds are required to

be real-analytic, etc). We will not study analytic manifolds in this

course, although they are very important in certain fields. In the

real-analytic category, Lemma 3.2 is false: there do not exist real- Exercise: Why?

analytic bump functions. Thus for analytic manifolds, Proposition

3.3 is false, and one is forced to work with germs to define the

tangent space.

(iv) Later in the course (Lecture 17) we will discuss sheaves, and germs

are a motivating example for the construction of the stalk of a

sheaf.

Let us give now give a concrete example of a tangent vector.

Example 3.6. Let M be a smooth manifold of dimension n, and let

(U, x) be a chart on M with local coordinates (xi). Let p be any point

in U . Define a derivation of C∞(U) at p by:

∂

∂xi

∣∣∣
p

: C∞(U)→ R,
∂

∂xi

∣∣∣
p
(f) := Di(f ◦ x−1)(x(p)),

where the right-hand side uses the convention from Definition 2.2. We

will shortly prove that the collection ∂
∂xi

∣∣
p

for i = 1, . . . ,m form a

basis of TpM , thus establishing Theorem 2.12.

Let us now get started on the proof of Theorem 2.12. We will need

the following easy lemma from multivariable calculus. Recall an open

set O ⊂ Rm such that 0 ∈ O is said to be star-shaped if given any

p ∈ O, the line segment from 0 to p is also contained in O.

Lemma 3.7. Let O ⊂ Rm be a star-shaped open set. Suppose h : O →
R is a smooth function. Then there exist m smooth functions gi : O →
R for i = 1, . . . ,m such that gi(0) = Dih(0) and such that

h = h(0) +

m∑
i=1

ui gi,

where ui is as in (2.1).
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Proof. Fix q = (a1, . . . , am) ∈ O and consider the line segment

γ(t) = tq. Set δ := h ◦ γ : [0, 1]→ R. Then by the chain rule

δ′(t) =

m∑
i=1

aiDih(tq).

Thus

h(q)− h(0) = δ(1)− δ(0) =

∫ 1

0

δ′(t) dt =

m∑
i=1

ai
∫ 1

0

Dih(tq) dt.

Since ai = ui(q) by definition, the claim follows with

gi(q) :=

∫ 1

0

Dih(tq) dt.

Theorem 2.12 from the last lecture follows immediately from the

next statement.

Proposition 3.8. Let M be a smooth manifold of dimension m. Let

x : U → O be a chart on M , and fix p ∈ U . Then any tangent vector

ξ ∈ TpM can be uniquely written as a linear combination

ξ =

m∑
i=1

ai
∂

∂xi

∣∣∣
p
.

In fact, ai = ξ(xi). Thus
{

∂
∂xi

∣∣
p
| i = 1, . . . , ,m

}
is a basis of TpM .

Proof. We may assume without loss of generality that x(p) = 0 and

that O is star-shaped. Let f ∈ C∞(U) and apply Lemma 3.7 with

h := f ◦ x−1. We obtain f = f(p) +
∑m
i=1 x

i (gi ◦ x), where

gi(0) = Di(f ◦ x−1)(0) =
∂

∂xi

∣∣∣
p
(f).

Thus for any derivation ξ, one has

ξ(f) = ξ(f(p))︸ ︷︷ ︸
=0

+

m∑
i=1

(
ξ(xi)gi(0) + xi(p)︸ ︷︷ ︸

=0

ξ(gi ◦ x)
)

=

m∑
i=1

ξ(xi)
∂

∂xi

∣∣∣
p
(f),

where we used Corollary 3.4 and the assumption that x(p) = 0.

This shows that
{

∂
∂xi

∣∣
p
| i = 1, . . . ,m

}
spans TpM . It remains to

prove linear independence. For this we note that:

∂

∂xi

∣∣∣
p
(xj) =

∂

∂xi

∣∣∣
p
(uj ◦ x)

= Di(u
j ◦ x ◦ x−1)(x(p))

= Diu
j(x(p))

= δji ,

(3.2)

where we used the fact that Duj = uj as uj is a linear function,

together with (2.2). Thus if ζ :=
∑m
i=1 b

i ∂
∂xi

∣∣
p

= 0 then feeding xj to ζ

gives bj = 0. This shows linear independence, and thus completes the

proof.
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Remark 3.9. Suppose x and y are two charts about p, with cor-

responding coordinate systems (xi) and (yi). Taking ξ = ∂
∂yj

∣∣
p

in

Proposition 3.8 tells us that

∂

∂yj

∣∣∣
p

=

m∑
i=1

∂

∂yj

∣∣∣
p
(xi)

∂

∂xi

∣∣∣
p
.

But unravelling the definitions,

∂

∂yj

∣∣∣
p
(xi) = Dj(x

i ◦ y−1)(y(p))

= Dj(u
i ◦ x ◦ y−1)(y(p)),

which is just the (i, j)th entry of the matrix D(x ◦ y−1)(y(p)). Thus we

have shown:

The transition matrix from the basis{
∂

∂yi

∣∣∣
p
| i = 1, . . . ,m

}
to the basis

{
∂

∂xi

∣∣∣
p
| i = 1, . . . ,m

}
is given by the matrix D(x ◦ y−1)(y(p)).

We conclude this lecture by introducing partitions of unity, and

using these to prove Lemma 3.2.

Definition 3.10. Let M be a smooth manifold. A partition of

unity is a collection {κa | a ∈ A} of smooth functions κa : M → R
such that:

(i) 0 ≤ κa(p) ≤ 1 for all p ∈M and a ∈ A.

(ii) The collection {supp(κa) | a ∈ A} is locally finite, i.e. any p ∈
M has a neighbourhood that intersects at most finitely many of

supp(κa).

(iii) For all p ∈M one has ∑
a∈A

κa(p) = 1

(note by (ii) this sum only has finitely many non-zero terms for

every p).

We say that a partition of unity {κa | a ∈ A} is subordinate to an

open cover {Ua | a ∈ A} if supp(κa) ⊂ Ua for each a ∈ A.

Theorem 3.11 (Partitions of unity). Let M be a smooth manifold.

For any open cover of M , there exists a partition of unity subordinate

to that cover.

The proof of Theorem 3.11 is carried out in the bonus section be-

low. Lemma 3.2 is an easy consequence of Theorem 3.11:

Proof of Lemma 3.2. Consider the open cover {U,M \K} of M . By

Theorem 3.11 there exists a partition of unity
{
κU , κM\K

}
. The func-

tion χ := κU has the properties we desire.
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Bonus Material for Lecture 3

In this bonus section we carry out the proof of Theorem 3.11. In fact,

we will first establish a special case of Lemma 3.2 where the smaller

set K is compact (instead of merely closed).

Lemma 3.12 (Bump functions, the compact case). Let M be a smooth

manifold and let K ⊂ U be subsets, where K is compact and U is

open. Then there exists a smooth function χ : M → R such that:

(i) 0 ≤ χ(p) ≤ 1 for all p ∈M ,

(ii) supp(χ) ⊂ U ,

(iii) χ(p) = 1 for all p ∈ K.

Proof. We prove the result in four steps.

1. We first prove that for any pair of real numbers r < R there

exists a smooth function f : R → [0, 1] such that f(t) = 1 for t ≤ r,

f(t) = 0 for all t ≥ R, and 0 < f(t) < 1 for all t ∈ (r,R). For this,

consider the function

h : R→ R, h(t) :=

e−1/t, t > 0,

0, t ≤ 0.

A somewhat tedious computation shows that h is smooth. Our desired Exercise: Enjoy.

function f is then given by

f(t) :=
h(R− t)

h(R− t) + h(t− r)
.

One can easily check this function f has the desired properties.

2. Now let us extend this to Rm. Let Br ⊂ Rm denote the open

ball of radius r about the origin (so that B1 = Bm). Then for any

0 < r < R there exists a smooth function g : Rm → R such that

g(p) = 1 for all p ∈ Br, g(p) = 0 on Rm \ BR, and 0 < g(p) < 1 for all

p ∈ BR \ Br. Indeed, the function g(p) := f(‖p‖), where f is as in the

previous step works.

3. Now let M be a smooth manifold, let p ∈ M , and let U be an

arbitrary neighbourhood of p. Then we can choose a smaller neigh-

bourhood V ⊂ U of p with V ⊂ U that has the following property:

there exists a smooth function χ : M → R such that χ(p) = 1 for all

p ∈ V , 0 ≤ χ(p) ≤ 1 for all p ∈ M , and χ(p) = 0 for all p ∈ M \ U .

This follows from the previous step, by choosing an appropriate chart

about p.

4. We now complete the proof. For each point p ∈ K, choose Such sets exist as metrisable spaces
are normal, cf. Definition 1.34.neighbourhoods Vp ⊂ Up such that V p ⊂ K and Up ⊂ U . Since

K is compact, there are finitely many points p1, . . . , pN such that

K ⊂
⋃N
i=1 Vpi . For each i, choose functions χi : M → R such that
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χi(p) = 1 for all p ∈ V i, 0 ≤ χi(p) ≤ 1 for all p ∈M , and χi(p) = 0 for

all p ∈M \ Ui. Now set

χ := 1−
m∏
i=1

(1− χi) .

One easily checks this χ does the trick.

We now prove the following alternative version of Theorem 3.11.

This proof assume you are familiar with paracompact space – see

Definition 1.29.

Theorem 3.13. Let M be a smooth manifold. Let {Ua | a ∈ A} be an

open cover of M . There exists a locally finite refinement {Vb | b ∈ B}
and a partition of unity {κb | b ∈ B} subordinate to {Vb | b ∈ B} with

the additional property that supp(κb) is a compact subset of M for

every b ∈ B.

Of course, the main content of the theorem is the existence of the

partition of unity {κb | b ∈ B} – the existence of the locally finite

refinement {Vb | b ∈ B} is just the very definition of paracompactness.

Proof. Paracompactness guarantees us the existence of a locally finite

refinement {Vb | b ∈ B}. In fact, we can do a little better than this: we

can find a locally finite refinement {Vb | b ∈ B} together with another

open cover {Wb | b ∈ B} (with the same index set B) such that W b is

compact for each b ∈ B and such that W b ⊂ Vb. This argument uses

the fact that M is also locally compact (Definition 1.35). We won’t

dwell on the details as they not important to the main theme of the

course.

We now apply Lemma 3.12 to each pair W b ⊂ Vb to obtain a

smooth function χb : M → R such that 0 ≤ χb(p) ≤ 1 for all p ∈ M ,

χb|W b
≡ 1, and supp(χb) ⊂ Vb is compact. The desired partition of

unity is then given by

κb :=
χb∑
b∈B χb

.

This completes the proof.

We conclude by proving Theorem 3.11

Proof of Theorem 3.11. Let {Ua | a ∈ A} be an arbitrary open cover.

Let {Vb | b ∈ B} be a locally finite refinement and let {κb | b ∈ B} be

a partition of unity subordinate to {Vb | b ∈ B}, whose existence are

guaranteed by Theorem 3.13. Choose a function β : B → A such that

Vb ⊂ Uβ(b) for each b ∈ B. Now define

κa :=
∑

b∈β−1(a)

κb.

If β−1(a) = ∅ this should be interpreted as the zero function. Then

supp(κa) =
⋃

b∈β−1(a)

{x ∈M | κb(p) 6= 0}

=
⋃

b∈β−1(a)

supp(κb) ⊂ Ua,
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where the second equality used the fact that {supp(κb) | b ∈ B} is a

locally finite. It is immediate that the collection {supp(κa) | a ∈ A} is Note however that κa need not have

compact support.locally finite, and thus we conclude that {κa | a ∈ A} is another parti-

tion of unity which is subordinate to our original cover {Ua | a ∈ A}.
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LECTURE 4

The Derivative

Let us now finally define the derivative of a smooth map.

Definition 4.1. Let M and N be smooth manifolds, and let ϕ : M →
N be a smooth map. Fix p ∈ M and ξ ∈ TpM . We define a tangent

vector ζ ∈ Tϕ(p)N by setting

ζ(f) := ξ(f ◦ ϕ), ∀ f ∈ C∞(N).

It is clear ζ is a linear derivation of C∞(N) at ϕ(p), and hence an

element of Tϕ(p)N . Moreover if we denote ζ by Dϕ(p)ξ then it is

immediate that the map ξ 7→ Dϕ(p)ξ is a linear map. We call this

linear map the derivative of ϕ at p.

The chain rule becomes essentially tautologous.

Proposition 4.2 (The chain rule on manifolds). Let M,N and L be

smooth manifolds, and suppose ϕ : M → N and ψ : N → L are smooth

maps. Then

D(ψ ◦ ϕ)(p) = Dψ(ϕ(p)) ◦Dϕ(p).

Proof. Take ξ ∈ TpM and f ∈ C∞(L). Then(
D(ψ ◦ ϕ)(p)ξ

)
(f) = ξ(f ◦ ψ ◦ ϕ)

=
(
Dϕ(p)ξ

)
(f ◦ ψ)

= Dψ(ϕ(p)) ◦
(
Dϕ(p)ξ

)
(f).

The claim follows.

Remark 4.3. You may wonder why the chain rule is so (suspiciously)

easy to prove. After all, the Euclidean version (Proposition 1.7) is

quite tricky. Does Proposition 4.2 give a shortcut to proving the Eu-

clidean version? The answer is sadly no: indeed, we already used the

Euclidean version at least twice (in Proposition 1.21 and Lemma 3.7),

and hence any attempt to “prove” the Euclidean version via Proposi-

tion 4.2 would yield a circular argument.

Let us compute the map Dϕ(p) in local coordinates.

Lemma 4.4. Let ϕ : M → N be a smooth map between two smooth

manifolds, where M has dimension m and N has dimension n. Fix

p ∈ M , and let (U, x) be a chart on M about p and (V, y) be a chart

on N about ϕ(p). Then the matrix of Dϕ(p) with respect to the bases{
∂
∂xj

∣∣
p
| j = 1, . . . ,m

}
of TpM and

{
∂
∂yi

∣∣
ϕ(p)
| i = 1, . . . , n

}
of Tϕ(p)N

is given by the matrix D(y ◦ ϕ ◦ x−1)(x(p)).
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Proof. We compute

Dϕ(p)

(
∂

∂xj

∣∣∣
p

)
=

n∑
i=1

Dϕ(p)

(
∂

∂xj

∣∣∣
p

)
(yi)

∂

∂yi

∣∣∣
ϕ(p)

=

n∑
i=1

∂

∂xj

∣∣∣
p
(yi ◦ ϕ)

∂

∂yi

∣∣∣
ϕ(p)

=

n∑
i=1

Dj(u
i ◦ y ◦ ϕ ◦ x−1)(x(p))

∂

∂yi

∣∣∣
ϕ(p)

The number Dj(u
i ◦y ◦ϕ◦x−1)(x(p)) is the (i, j)th entry of the matrix

D(y ◦ ϕ ◦ x−1)(x(p)), and thus the proof is complete.

Remark 4.5. Suppose f : O ⊂ Rm → Rn is smooth. We now have two

(!) definitions of the map Df(p). We temporarily write the two maps

as Df(p)calc and Df(p)man. Thus Df(p)calc is a linear map Rm → Rn;

it is the matrix of partial derivatives, as at the beginning of Lecture 1.

Meanwhile Df(p)man is a linear map TpRm → Tf(p)Rn. In fact, these A coordinate-free proof of this fact is
given in Corollary 4.14 below.are the “same” map. Indeed, we apply Lemma 4.4 with x and y the

respective identity maps. Then the (i, j)th entry of Df(p)man is given

by

Dj(u
i ◦ f)(p) =

∂f i

∂uj
,

which is also the (i, j)th entry of Df(p)calc. From now on we will drop

the “calc” and “man” superscripts, and just call both maps Df(p). It

should be clear from the context which is meant.

We now give an entirely different way of defining tangent vectors.

This approach is not quite as aesthetically pleasing as using deriva-

tions, but it has the advantage that it is easier to compute.

Suppose γ : (a, b) → Rm is a smooth map. We usually write the

coordinate on R = R1 as t instead of u1, and we denote the derivative

of γ at a point t by γ′(t). Writing γ = (γ1, . . . , γm), the vector γ′(t) is

just the row vector ((γ1)′(t), . . . , (γm)′(t)). Our aim now is to extend

this to manifolds.

Definition 4.6. A curve in a smooth manifold M is a smooth map

γ : (a, b) → M , where we think of (a, b) as a 1-dimensional smooth

manifold. Now fix t ∈ (a, b). There are, a priori, two different ways we The use of both a dot and a dash to

denote derivatives in (4.1) is deliber-
ate: a dot denotes a tangent vector in
a manifold, whereas a dash denotes
the normal derivative from calculus.

See Definition 4.11 below.

could define an element γ̇(t) of Tγ(t)M , which we will call the velocity

vector of γ at time t.

(i) Firstly, we can define a derivation on C∞(M) at γ(t) by setting

γ̇(t)(f) := (f ◦ γ)′(t), f ∈ C∞(M). (4.1)

(ii) Secondly, if we think of γ as a smooth map between manifolds then

we can define a tangent vector γ̇(t) at γ(t) via the derivative Dγ(t):

γ̇(t) := Dγ(t)

(
∂

∂t

∣∣∣
t

)
∈ Tγ(t)M. (4.2)
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To see that these two definitions agree, let x be a chart defined on a

neighbourhood of γ(t) with local coordinates (xi). Let γi := xi ◦ γ so

that γi is a curve in R. Applying Proposition 3.8 to (4.1), we see that

γ̇(t) =

m∑
i=1

(γi)′(t)
∂

∂xi

∣∣∣
γ(t)

, (4.3)

since

γ̇(t)(xi) = (xi ◦ γ)′(t) = (γi)′(t).

But similarly by applying Lemma 4.4 to (4.2) we see that this defini-

tion also gives the same formula (4.3) for γ′(t).

Lemma 4.7. Let M be a smooth manifold and let γ, δ : (−ε, ε) → M

be two smooth curves such that γ(0) = δ(0). Then γ̇(0) = δ̇(0)

as elements of Tγ(0)M if and only if for some (and hence any) chart

(U, x) defined on a neighbourhood of γ(0), we have

(x ◦ γ)′(0) = (x ◦ δ)′(0). (4.4)

Proof. The stated condition is equivalent to requiring that (γi)′(0) =

(δi)′(0) for each i, where γi = xi ◦ γ and δi = xi ◦ δ. The claim follows

from (4.3), since
{

∂
∂xi

∣∣
γ(0)
| i = 1, . . . ,m

}
is a basis of Tγ(0)M .

What is less clear is that every tangent vector can be written as the

velocity vector of a curve.

Proposition 4.8. Let M be a smooth manifold of dimension m, let

p ∈ M and let ξ ∈ TpM . There exists a smooth curve γ : (−ε, ε) → M

such that γ(0) = p and γ̇(0) = ξ.

Proof. Choose a chart x : U → O ⊂ Rm, where O is an open set

containing 0 such that x(p) = 0. Write

ξ =

m∑
i=1

ai
∂

∂xi

∣∣∣
p
,

where the ai are real numbers. For sufficiently small ε > 0, the vector

(ta1, . . . , tam) belongs to O for all |t| < ε. This means that if we define

γ : (−ε, ε)→M, γ(t) := x−1(ta1, ta2, . . . , tam),

then γ is well-defined, smooth, and satisfies γ(0) = p. Moreover (4.3)

shows us that γ̇(0) = ξ.

Remark 4.9. This tells us that we can make the following alternative

definition of TpM : a tangent vector at p ∈M is an equivalence class of

smooth curves γ : (−ε, ε) → M such that γ(0) = p, where γ ∼ δ if and

only if for some chart x centred about p, (4.4) holds.

Note however that this only works because we have already estab-

lished that TpM was a vector space with basis
{

∂
∂xi

∣∣
p

}
. If one wanted

to start with this definition of TpM , one would need to use Problem

B.1 to endow TpM with a vector space structure.

Let us examine how velocity vectors behave with respect to smooth

maps.
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Proposition 4.10. Let ϕ : M → N be a smooth map between two

smooth manifolds, and let γ : (a, b) → M be a smooth curve in M .

Then δ := ϕ ◦ γ is a smooth curve in N , and

Dϕ(γ(t))γ̇(t) = δ̇(t).

Proof. We will give two proofs, one for each of the two (equivalent)

definitions (4.1) and (4.2) of γ̇(t). Of course these are really the same

proof.

(i) Proof using (4.1) as the definition of γ̇(t): Take f ∈ C∞(N). Then

by the definition of Dϕ(p) and (4.1)

Dϕ(γ(t))γ̇(t)(f) = γ̇(t)(f ◦ ϕ)

= (f ◦ ϕ ◦ γ)′(t)

= (f ◦ δ)′(t)
= δ̇(t)(f)

(ii) Proof using (4.2) as the definition of γ̇(t): For this we simply use

the chain rule (Proposition 4.2):

Dϕ(γ(t))γ̇(t) = Dϕ(γ(t)) ◦Dγ(t)

(
∂

∂t

∣∣∣
t

)
= D(ϕ ◦ γ)(t)

(
∂

∂t

∣∣∣
t

)
= Dδ(t)

(
∂

∂t

∣∣∣
t

)
= δ̇(t).

This completes the proof (twice).

We now use our new definition of a tangent vector to prove that the

tangent space of a vector space is canonically isomorphic to the vector

space itself.

Definition 4.11. Let E be a vector space of dimension m, endowed

with its standard smooth structure (cf. Example 1.14). Fix p ∈ E.

Define the dash-to-dot map

Jp : E → TpE, Jpξ := γ̇(0), where γ(t) := p+ tξ.

Note that ξ = γ′(0) (normal derivative), and hence Jp is the map This explains the name “dash to dot”.

Jp : γ′(0) 7→ γ̇(0).

Lemma 4.12. The dash-to-dot map is a canonical isomorphism.

Proof. The smooth structure on E is determined taking a chart which

is a linear isomorphism ` : E → Rm, cf. Example 1.14. Let `i := ui ◦ `
denote the local coordinates of such a chart. The map ` determines a

basis {vi} of E via the equation `vi = ei. If one writes an arbitrary
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vector in E in terms of this basis as ξ =
∑m
i=1 a

ivi then ai = `i(ξ).

Now with γ(t) := p+ tξ one has

Jpξ = γ̇(0)

=

m∑
i=1

γ̇(0)(`i)
∂

∂`i

∣∣∣
p

=

m∑
i=1

(`i ◦ γ)′(0)
∂

∂`i

∣∣∣
p

=

m∑
i=1

`i(ξ)
∂

∂`i

∣∣∣
p

=

m∑
i=1

ai
∂

∂`i

∣∣∣
p
.

This shows that the matrix of Jp with respect to the basis {vi} of E

and
{

∂
∂`i

∣∣
p

}
of TpE is simply given by identity map, which in particu-

lar is an isomorphism.

The proof of Lemma 4.12 required us to fix a basis of E (i.e. to

choose a chart `) in order to prove that Jp was an isomorphism. But

the definition of Jp did not require us to choose a basis of E. This

explains the “canonical” in the statement of Lemma 4.12.

Remark 4.13. If we go back to our original definition of tangent vec-

tors as derivations, the dash-to-dot map is given by taking directional

derivatives:

(Jpξ)(f) = Df(p)ξ, f ∈ C∞(E).

Compare to Example 2.8.

Remark 4.5 can now be expressed in a coordinate-free manner.

Corollary 4.14. Suppose f : O ⊂ Rm → Rn is smooth. Then using

the notation from Remark 4.5, the following diagram commutes: This means that going clockwise is the

same as going anticlockwise.

Rm Rn

TpRm Tf(p)Rn

Df(p)calc

Jp Jf(p)

Df(p)man

We conclude with the following statement, whose proof is deferred

to Problem Sheet B.

Lemma 4.15. Let E and F be vector spaces and assume that ` : E →
F is a linear map. Then for any p ∈ E the following diagram com-

mutes:

E F

TpE T`pF

`

Jp J`p

D`(p)
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LECTURE 5

The Tangent Bundle

We begin this lecture by defining the cotangent space of a manifold.

We then move onto the tangent and cotangent bundles. We conclude

by recalling the Euclidean versions of the Inverse and Implicit Func-

tion Theorems. These will be generalised to manifolds next lecture.

Definition 5.1. Let M be a smooth manifold of dimension m and let

p ∈ M . We denote the dual vector space (TpM)∗ by T ∗pM and call it

the cotangent space of M at p.

Convention. We write a typical element of cotangent space with the

symbols λ and η. We sometimes write λp to indicate that λ ∈ T ∗pM .

The cotangent space T ∗pM is another vector space of dimension

m. Since elements of TpM are linear derivations eating functions, the

standard duality construction tells us that we can interpret elements

of T ∗pM as functions eating linear derivations.

Example 5.2. Let M be a smooth manifold of dimension m and let

p ∈ M . Let U be a neighbourhood of p and let f ∈ C∞(U). Then f

defines an element dfp ∈ T ∗pM by

dfp(ξ) := ξ(f), ξ ∈ TpM.

One calls dfp the differential of f at p.

Remark 5.3. Thus dfp is a linear function TpM → R. In contrast, Note: “derivative” and “differential”

are two different words!the derivative Df(p) is a linear function TpM → Tf(p)R. The two are

related via the dash-to-dot map Jf(p) : R → Tf(p)R in the sense that

the following commutes:

i.e. Df(p) = Jp ◦ dfp.
TpM Tf(p)R

R

Df(p)

dfp Jf(p)

Since by definition Jf(p)(1) = ∂
∂t

∣∣
f(p)

, this means that

Df(p)ξ = dfp(ξ)
∂

∂t

∣∣∣
f(p)

, ∀ ξ ∈ TpM.

Proposition 5.4. Let M be a smooth manifold of dimension m and

let p ∈ M . Let (U, x) be a chart about p, with corresponding local

coordinates (xi). Then
{
dxip
}

is a basis of T ∗pM .

Proof. We need only note that
{
dxip
}

is the dual basis to
{

∂
∂xi

∣∣
p

}
since

dxjp

(
∂

∂xi

∣∣∣
p

)
=

∂

∂xi

∣∣∣
p
(xj) = δji ,

by (3.2) from the last lecture.
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We now aim to “glue” the vector spaces TpM together into one big

manifold TM .

Definition 5.5. Let M be a smooth manifold. The tangent bundle The tangent bundle is the proto-

typical example of a more general

construction called a vector bundle
over a smooth manifold. We will take

up their study in Lecture 13.

of M is the disjoint union of the tangent spaces:

TM =
⊔
p∈M

TpM.

We adopt a somewhat flexible notation for points in TM . If ξ ∈ TpM
we write the corresponding point in TM either simply by ξ again, or

as a pair (p, ξ). There is a map π : TM → M given by π(p, ξ) = p. We

call π the footpoint map.

As it stands TM is only a set. Let us now prove it is actually a

smooth manifold.

Theorem 5.6. Let M be a smooth manifold of dimension m. The

smooth structure on M naturally induces a smooth structure on TM ,

making TM into a smooth manifold of dimension 2m. Moreover the

map π : TM →M is smooth.

Proof. Let X = {xa : Ua → Oa | a ∈ A} be our smooth atlas on M .

Write xia = ui ◦ xa for the local coordinates of xa. We build a chart

x̃a : π−1(Ua)→ Oa × Rm by setting

x̃a(p, ξ) =

(
xa(p),

m∑
i=1

(dxia)p(ξ) ei

)
, p ∈ Ua, ξ ∈ TpM.

We will prove that if Ua ∩ Ub 6= ∅ then for all z ∈ xa(Ua ∩ Ub) and

ζ ∈ Rm, one has:

x̃b ◦ x̃−1
a (z, ζ) =

(
xb ◦ x−1

a (z), D(xb ◦ x−1
a )(z)ζ

)
, (5.1)

From this it follows from Proposition 1.17 that TM is a smooth man-

ifold. To prove (5.1), write ζ =
∑m
j=1 c

j ej and set p := x−1
a (z) ∈

Ua ∩ Ub. Then

x̃−1
a (z, ζ) =

p, m∑
j=1

cj
∂

∂xja

∣∣∣
p

 .

Fix 1 ≤ i ≤ m. We compute

(dxib)p

 m∑
j=1

cj
∂

∂xja

∣∣∣
p

 =

m∑
j=1

cj (dxib)p

(
∂

∂xja

∣∣∣
p

)

=

m∑
j=1

cj
∂

∂xja

∣∣∣
p
(xib)

By Remark 3.9, the number ∂

∂xja

∣∣∣
p
(xib) is the (i, j)th entry of the ma-

trix D(xb ◦ x−1
a )(z). Thus

m∑
i=1

(dxib)p

 m∑
j=1

cj
∂

∂xja

∣∣∣
p

ei = D(xb ◦ x−1
a )(z)ζ,

and (5.1) is proved.
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The right-hand side of (5.1) is a diffeomorphism by assumption.

Thus

X̃ =
{
x̃a : π−1(Ua)→ Oa × Rm | a ∈ A

}
is a smooth atlas on TM . This proves that TM is a smooth manifold

of dimension 2m. To check that π is smooth, we simply observe that if

z ∈ Oa and ζ ∈ Rm then

xa ◦ π ◦ x̃−1
a (z, ζ) = z,

which is obviously smooth.

We can use the tangent bundle to unify the derivatives Dϕ(p) from

Definition 4.1 into a single map.

Definition 5.7. Let ϕ : M → N be a smooth map between two

smooth manifolds. Define the derivative of ϕ to be the map

Dϕ : TM → TN, Dϕ(p, ξ) := (ϕ(p), Dϕ(p)ξ) .

On Problem Sheet C you will prove this map is smooth.

Definition 5.8. Let M be a smooth manifold. The cotangent bun-

dle of M is the disjoint union of the cotangent spaces:

T ∗M =
⊔
p∈M

T ∗pM.

As with TM , points in T ∗M will sometimes be denoted by (p, λ),

or λp, or sometimes just λ. We denote again by π : T ∗M → M the

footpoint map π(p, λ) = p.

On Problem Sheet B you will show that T ∗M is also naturally a

smooth manifold of twice the dimension of M .

We conclude this lecture by discussing the Inverse and Implicit

Function Theorems. We state the Euclidean version of the Inverse

Function Theorem, and use it to prove the manifold version of the

Inverse Function Theorem, and the Euclidean version of the Implicit

Function Theorem. Next lecture we will take this one step further and

prove a version of the Implicit Function Theorem for manifolds.

We say that a smooth map f : O ⊂ Rm → Rn has rank k at p ∈ O
if the n × m matrix Df(p) has rank k. We say that f has maximal

rank at p if the rank of f at p is as large as it can be (which is thus

equal to the minimum of m and n). If m = n then f has maximal

rank at p if and only if Df(p) is invertible.

Theorem 5.9 (The Inverse Function Theorem). Let f : O ⊂ Rm →
Rm be a smooth map, where O is open. Let p ∈ O and assume the

matrix Df(p) has maximal rank ( = m). Then there exists a neigh-

bourhood Ω ⊂ O of p such that the restriction f : Ω → f(Ω) is a

diffeomorphism.

The theorem immediately carries over to manifolds. We say that a

smooth map ϕ : M → N has rank k at a point p if the linear subspace

Dϕ(p)(TpM) has dimension k inside of Tϕ(p)N .
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Theorem 5.10 (The Inverse Function Theorem for manifolds). Let

M and N be smooth manifolds of the same dimension m and suppose

ϕ : M → N is a smooth map. Let p ∈ M and assume that ϕ has

maximal rank ( = m) at p. Then there exists a neighbourhood W of p

such that the restriction ϕ : W → ϕ(W ) is a diffeomorphism.

Proof. The assertion is purely local. Choose a chart x : U → O on M

at p and a chart y : V → Ω on N at ϕ(p) such that ϕ(U) ⊂ V . Since

x and y are diffeomorphisms (cf. Example 1.20), the derivative of the

map

y ◦ ϕ ◦ x−1 : x(U)→ y(V )

has rank m at x(p). Thus by Theorem 5.9 there exists O0 ⊂ O such

that y ◦ ϕ ◦ x−1|O0
is a diffeomorphism. Then using once more that x

and y are diffeomorphisms, if W := x−1(O0) then ϕ|W : W → ϕ(W ) is

also a diffeomorphism.

We now move onto the Implicit Function Theorem. We shall give a

quick proof using the Inverse Function Theorem.

Theorem 5.11 (The Implicit Function Theorem). Let O be a neigh-

bourhood of 0 in Rm and suppose f : O → Rn is a smooth map such

that f(0) = 0, and such that Df(0) has maximal rank.

(i) The case m ≤ n: Let ι : Rm → Rn denote the inclusion

ι(u1, . . . , um) := (u1, . . . , um, 0, . . . , 0). (5.2)

Then there exists a chart y about 0 on Rn such that y ◦ f = ι on a

neighbourhood of 0 in Rm.

(ii) The case m ≥ n: Let ρ : Rm → Rn denote the projection

ρ(u1, . . . , um) := (u1, . . . , un). (5.3)

Then there exists a chart x about 0 in Rm such that f ◦ x = ρ on a

neighbourhood of 0 in Rm.

Proof. We start with (i). The matrix Df(0) has rank m. By rear-

ranging the coordinate functions f i = ui ◦ f if necessary (this corre-

sponds to composing f with a linear isomorphism Rn → Rn, which

is a diffeomorphism), we may assume that the m × m submatrix(
∂fi

∂uj (0)
)

1≤i,j≤m
is invertible. Now define a map

f̃ : O × Rn−m → Rn

by

f̃(u1, . . . , un) = f(u1, . . . , um) + (0, . . . , 0, um+1, . . . , un).

Then f̃ ◦ ι = f and the derivative Df̃(0) takes the following form:

Df̃(0) =

( ∂fi∂uj (0)
)

1≤i,j≤m
0

∗ idRn−m


where ∗ denotes the other entries of Df(0). Thus detDf̃(0) 6= 0, and

consequently Df̃(0) has rank n. Thus by Theorem 5.9, there exists
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a neighbourhood O0 ⊂ O × Rn−m of the origin 0 ∈ Rn such that

f̃ : O0 → f̃(O0) is a diffeomorphism. If y denotes the inverse to f̃ |O0

then y ◦ f = y ◦ f̃ ◦ ι = ι. This proves (i).

The proof of (ii) is very similar. This time we may assume that the

submatrix
(
∂fi

∂xj (0)
)

1≤i,j≤n
is invertible, and we define f̃ : O → Rm by

f̃(u1, . . . , um) := (f(u1, . . . , um), un+1, . . . , um).

Then f = ρ ◦ f̃ and the derivative Df̃(0) takes the following form:

Df̃(0) =

( ∂fi∂xj (0)
)

1≤i,j≤n
∗

0 idRm−n


This is invertible, whence f̃ has a local inverse x, and f ◦x = ρ◦ f̃ ◦x =

ρ.



Will J. Merry

LECTURE 6

Submanifolds

We begin this lecture by proving a version of the Implicit Function

Theorem 5.11 for manifolds. We remind the reader that unless stated

otherwise, M should always be assumed to have dimension m and N

should always be assumed to have dimension n. As in the statement of

Theorem 5.11, we must make a case distinction depending as to which

of m and n is larger. Unlike in the Euclidean case, however, the two

statements are not analogous to each other – as we will see, the case

m ≤ n is straightforward, but the case m ≥ n is rather deeper.

We first deal with the case where m ≤ n.

Definitions 6.1. Let ϕ : M → N be a smooth map.

• We say that ϕ is an immersion if the linear map Dϕ(p) : TpM → Note an immersion can only exist
when m ≤ n.Tϕ(p)N is injective for every p ∈M .

• If in addition ϕ itself is injective then we say that ϕ is an injective

immersion.

• If in addition ϕ maps M homeomorphically onto ϕ(M) (where

ϕ(M) is endowed with the subspace topology in N) we say that ϕ

is an embedding.

Remark 6.2. If M is compact, then an injective immersion ϕ : M →
N is automatically an embedding, as you will prove on Problem Sheet

C. However in the non-compact case, this need not be the case (see

again Problem Sheet C). An immersion is always locally an embed-

ding, as the next result shows.

The next result is the manifold version of part (i) of the Implicit

Function Theorem 5.9.

Proposition 6.3. Suppose ϕ : M → N is an immersion. Then for any

p ∈ M , there exists a neighbourhood U of p and a chart y : V → Ω on

N , where V is some neighbourhood of ϕ(p) such that:

(i) One has:

ϕ(U) ∩ V =
{
q ∈ V | ym+1(q) = · · · = yn(q) = 0

}
. (6.1)

(ii) ϕ|U is an embedding.

Proof. The assertion is again local. Let ι : Rm → Rn denote the

inclusion, as in part (i) of the Implicit Function Theorem 5.11. Let x

denote a chart on M with x(p) = 0 and let z denote a chart on N with

z(ϕ(p)) = 0. Then z ◦ ϕ ◦ x−1 has maximal rank at 0, and hence by
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part (i) of the Implicit Function Theorem there exists a chart ỹ on Rn

about 0 and a neighbourhood O of 0 in Rm such that

ỹ ◦ z ◦ ϕ ◦ x−1|O = ι|O.

Set U := x−1(O) and set y := ỹ ◦ z. Then after restricting the domain

if necessary, (6.1) holds. To prove the second statement, simply note

that ϕ|U = y−1 ◦ ι ◦ x|U is the composition of embeddings, and thus is

an embedding.

Remark 6.4. If ϕ is an embedding then the set ϕ(U) from Propo-

sition 6.3 can be written as ϕ(U) = ϕ(M) ∩ W for some open set

W ⊂ N . (This is just the definition of the subspace topology). Replac-

ing V with W ∩ V , (6.1) becomes

ϕ(M) ∩ V =
{
q ∈ V | ym+1(q) = · · · = yn(q) = 0

}
. (6.2)

Definition 6.5. Let M and N be manifolds with M ⊂ N (as sets).

We say that M is a embedded submanifold of N if the inclusion

M ↪→ N is an embedding. If the inclusion is merely an immersion, we Note the inclusion is always injective!

say that M is an immersed submanifold.

If M is an embedded submanifold of N then Remark 6.4 tells us we

can always choose charts on N that satisfy (6.2). We give such a chart

a special name:

Definition 6.6. Let M be an embedded submanifold of N . A slice

chart for M in N is a chart y : V → Ω on N such that

M ∩ V =
{
q ∈ V | ym+1(q) = · · · = yn(q) = 0

}
.

In fact, the existence of slice charts is an “if and only if” condition,

in the sense that we can use slice charts to endow a subset with a

smooth structure. The next result makes this more precise.

Proposition 6.7. Let N be a smooth manifold and suppose M ⊂ N

is a subset with the property that around every point p ∈ M there

exists a chart y : V → Ω on N with p ∈ V such that

M ∩ V =
{
q ∈ V | ym+1(q) = · · · = yn(q) = 0

}
. (6.3)

Then if we endow M with the subspace topology on N , M is a topo-

logical manifold of dimension m, and moreover it has a smooth struc-

ture that makes it into an embedded submanifold of N .

Proof. Let ρ : Rn → Rm denote the projection Warning: We are still in the case

m ≤ n. Thus m and n have switched

roles compared to the projection from
(5.3).

ρ(u1, . . . , un) := (u1, . . . , um).

Fix p ∈ M and let y : V → Ω be a chart as in (6.3). Let U := M ∩ V
and let O := ρ(y(U)), and set x := ρ ◦ y|U . If M is given the subspace

topology then x is a homeomorphism. If we do this at every point

p ∈ M , we end up with a collection of maps for which the hypotheses

of Proposition 1.17 are satisfied. Thus M is a smooth manifold of

dimension m. Moreover the topology on M that Proposition 1.17
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provides coincides with the subspace topology, since the maps x were

already homeomorphisms in the subspace topology. Finally if i : M ↪→
N denotes the inclusion then with y, x as above, one has y◦i◦x−1 = ι,

where ι was defined in (5.2). Since ι is smooth, so is i.

Remark 6.8. If ϕ : M → N is an injective immersion then M is

diffeomorphic to an immersed submanifold of N — namely, M ∼=
ϕ(M). The same is true for embeddings.

We now move to the case where m ≥ n.

Definitions 6.9. Let ϕ : M → N be smooth. A point p ∈ M is said

to be a regular point of ϕ if ϕ has rank n at p. A point p ∈ M is Note this can only happen when

m ≥ n.called a critical point if it is not a regular point. Similarly a point

q ∈ N is called a regular value if every point in ϕ−1(q) is a regular

point. A point q ∈ N is called a critical value if it is not a regular

value. If q ∈ N \ ϕ(M) then q is vacuously a

regular value of ϕ.

We now state the manifold version of part (ii) of the Implicit Func-

tion Theorem 5.11. Despite the fact that this is only “half” of the

Euclidean Implicit Function Theorem, this result is usually called

“the” Implicit Function Theorem (and Proposition 6.3 doesn’t get a

name).

Theorem 6.10 (The Implicit Function Theorem for manifolds). Let

ϕ : M → N be a smooth map and suppose q ∈ N is a regular value

of ϕ such that L := ϕ−1(q) is not empty. Then L is a topological

manifold of dimension m−n. Moreover there exists a smooth structure

on L which makes L into a smooth embedded submanifold of M .

Unlike Proposition 6.3 this is a much deeper result, as the assertion

is not local — there is no reason why L should be contained in the

domain of a chart on M . This proof is deferred to the bonus section at

the end of the lecture, since it is rather fiddly.

Definition 6.11. A smooth map ϕ : M → N is called a submersion

if every point of M is a regular point of ϕ, i.e. if Dϕ(p) is surjective

for every p ∈M .

Thus if ϕ is a submersion then by the Implicit Function Theorem

6.10, every point p ∈ M belongs to the (m− n)-dimensional embedded

submanifold ϕ−1(ϕ(p)).

Definition 6.12. Let ϕ : M → N be a smooth map. Fix p ∈ M .

We say that ϕ admits smooth local sections if for every p ∈ M The motivation behind the name
“section” will come in Lecture 15.there exists a neighbourhood U of p and a neighbourhood V of ϕ(p),

together with a smooth map ψ : V → U such that

ϕ ◦ ψ = id, on V.

Proposition 6.13. Let ϕ : M → N be a submersion. Then ϕ is an

open map which admits smooth local sections.
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Proof. Let p ∈ M . From the Implicit Function Theorem 5.11, we may

choose a chart x : U → O on M about p and a chart y : V → Ω on N

about ϕ(p) such that y ◦ ϕ ◦ x−1 is of the form

(u1, . . . , um) 7→ (u1, . . . , un). (6.4)

By shrinking the domains if necessary we may assume

O = O1 ×O2 ⊂ Rn × Rm−n

and that Ω = O1. Define

ψ : V → U, ψ(q) := x−1
(
y(q), π2(x(p))

)
Then ψ is smooth and by (6.4) one has ϕ ◦ ψ = id on V . The fact that

ϕ is an open map is clear from the representation (6.4), since a small

open cube {|ui| < ε | i = 1, . . . ,m} is mapped onto the small open

cube {|ui| < ε, | i = 1, . . . , n}.

Corollary 6.14. Let ϕ : M → N be a surjective submersion. Then ϕ A surjective continuous map f : X →
Y is a quotient map if for V ⊂ Y ,

one has V open ⇔ f−1(V ) open.
is a quotient map.

We now identify the tangent space of a submanifold produced via

the Implicit Function Theorem.

Proposition 6.15. Let ϕ : M → N be a smooth map and let q ∈ N
be a regular value of ϕ such that L := ϕ−1(q) 6= ∅. Let i : L ↪→ M

denote the inclusion. Then for all p ∈ L, one has

Di(p)(TpL) = kerDϕ(p).

Proof. By assumption both sides are linear subspaces of TpM of di-

mension m−n, so it suffices to show that Di(p)(TpL) ⊂ kerDϕ(p). For

this take f ∈ C∞(N) and ξ ∈ TpL. Then by the chain rule (Proposi-

tion 4.2), one has

Dϕ(p) ◦
(
Di(p)ξ

)
(f) =

(
D(ϕ ◦ ι)(p)ξ

)
(f)

= ξ(f ◦ ϕ ◦ i).

But f ◦ ϕ ◦ i ∈ C∞(L) is the constant function p 7→ f(q) and hence by

Corollary 3.4 one has ξ(f ◦ ϕ ◦ i) = 0. The result follows.

Proposition 6.15 finally allows us to recover the “intuitive” defini-

tion of the tangent space for S2 given in Figure 2.1 at the beginning of

Lecture 2.

Example 6.16. Let f : Rm+1 → R be the map f(p) = ‖p‖2 − 1. It

is straightforward to check that f is smooth and that the only critical

point of f is 0 ∈ Rm+1. Thus 0 ∈ R is a regular value of f , and so

by the Implicit Function Theorem 6.10, Sm = f−1(0) is a smooth

manifold of dimension m. This is the same smooth structure as the

one given in Proposition 1.16. If we denote by i : Sm → Rm+1 the

inclusion then (as you will check on Problem Sheet C), one has

Di(p)(TpS
m) = Jp(p⊥), (6.5)
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where Jp : Rm+1 → TpRm+1 is the dash-to-dot map from Definition

4.11, and

p⊥ :=
{
q ∈ Rm+1 | 〈p, q〉 = 0

}
,

for 〈·, ·〉 the standard Euclidean dot product. Now a moment’s thought

shows that (6.5) implies that the tangent space to Sm at a point p is

the hyperplane tangent to Sm at p, as Figure 2.1 claimed.

We now state a version of Sard’s Theorem valid for manifolds.

Theorem 6.17 (Sard’s Theorem for Manifolds). Let ϕ : M → N

be a smooth map. The set of critical values of ϕ has measure zero

and is nowhere dense. The set of regular values of ϕ is residual and

thus dense in N . In particular, if m < n then every point of M is

necessarily a critical point of ϕ, and hence N \ ϕ(M) is dense in N .

A sketch of the proof of Theorem 6.17 is in the bonus section below.

We next discuss a generalisation of the Implicit Function Theorem

in Euclidean spaces (Theorem 5.11), which will occasionally be useful.

Suppose O is a neighbourhood of 0 in Rm and f : O → Rn is a smooth

map. As Theorem 5.11 showed, if we assumed that the rank of f at 0

was maximal (and thus either equal to m or n, depending which was

larger), then the rank of f was also maximal for all p near 0 too. Thus

having maximal rank is an open condition.

If the rank is not maximal, then it can “jump”, i.e. if f has (non-

maximal) rank k at 0 then for p arbitrarily close to 0 the rank of f at

p can be different to k. However if one adds as a hypothesis that the

rank of f does not jump, then an analogous result to Theorem 5.11

holds. Here is a precise statement:

Theorem 6.18 (The Constant Rank Theorem). Let O be a neigh-

bourhood of 0 in Rm and suppose f : O → Rn is a smooth map such

that f(0) = 0. Assume that f has constant rank k for all p ∈ O, and

let κ : Rm → Rn denote the map

κ(u1, . . . , um) = (u1, . . . , uk, 0, . . . , 0). (6.6)

There exists chart x about 0 on Rm and a chart y about 0 on Rn such

that y ◦ f ◦ x = κ on a neighbourhood of 0 on Rm.

The proof is similar (albeit slightly messier) than Theorem 5.11,

and we omit the details. Just as in Proposition 6.3, one can immedi-

ately translate this to a local statement about smooth maps between

manifolds:

Corollary 6.19. Let ϕ : M → N be a smooth map. Let p ∈ M and

assume there exists a neighbourhood of p such that ϕ has constant

rank k on that neighbourhood. Then there exists a chart x on M

about p and a chart y on N about ϕ(p) such that y ◦ ϕ ◦ x−1 = κ,

where κ is as in (6.6).



6

Bonus Material for Lecture 6

In this bonus section we prove Theorem 6.10 and sketch the proof of

Sard’s Theorem 6.17.

Proof of Theorem 6.10. We prove the result in four steps.

1. Let us first fix some notation. Write Rm = Rn × Rm−n. Let ρ1

and ρ2 denote the two projections Rm → Rn and Rm−n respectively:

ρ1(u1, . . . , um) := (u1, . . . , un), ρ2(u1, . . . , um) := (un+1, . . . , um),

and let  : Rm−n → Rm denote the inclusion onto the last m − n

coordinates:

(u1, . . . , um−n) = (0, . . . , 0, u1, . . . , um−n).

Now let y : V → y(V ) ⊂ Rn denote a chart on N such that y(q) = 0.

Fix a point p ∈ L and let x : U → x(U) ⊂ Rm denote a chart on

M such that x(p) = 0. Then y ◦ ϕ ◦ x−1 has maximal rank n at

0 ∈ Rm, and hence by part (ii) of the Implicit Function Theorem 5.11

there exists a chart z on Rm, defined on an open ball O containing the

origin such that

y ◦ ϕ ◦ x−1 ◦ z|O = ρ1|O.

Shrinking O if necessary, we may assume O = ρ1(O) × ρ2(O) ⊂
Rn × Rm−n. Set Ω := ρ2(O). Then

y ◦ ϕ ◦ x−1 ◦ z ◦ |Ω = ρ1 ◦ |Ω ≡ 0.

Thus if σ := x−1 ◦ z ◦ |Ω then σ(Ω) ⊂ L.

2. In this step we show that the inclusion L ↪→ M is a topological

embedding in a neighbourhood of p. For this, it suffices to show that

σ maps Ω homeomorphically onto a neighbourhood of p in L in the

subspace topology. This means that we must prove:

σ(Ω) = L ∩ (x−1 ◦ z)(O). (6.7)

It is clear that the left-hand side of (6.7) is contained in the right-hand

side. Indeed, we have

σ(Ω) = (x−1 ◦ z ◦ )(Ω)

= (x−1 ◦ z)
(
O ∩

(
0× Rm−n

))
⊂ L ∩ (x−1 ◦ z)(O).

To see the other direction, if v ∈ L∩ (x−1 ◦ z)(O) then v = (x−1 ◦ z)(u)

for a unique u ∈ O, and since

ρ1(u) =
(
y ◦ ϕ ◦ x−1 ◦ z

)
(u)

= y ◦ ϕ(v)

= 0,
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we can write v = (0, v0) for a unique v0 ∈ Ω. Then v = σ(v0). This

proves the other inclusion, and hence establishes (6.7).

3. We now show that L is a smooth manifold. Using the nota-

tion from above, set W := σ(Ω) and let w := σ−1. We shall show

that w : W → Ω can serve as a chart on L. More precisely, we claim

that the collection of all such charts, as p ranges over L, determines

a smooth structure on L. To see this, suppose p1 was another point

in L with corresponding chart x1 : U1 → x1(U1) ⊂ Rm. Assume that

U ∩ U1 6= ∅. Let z1 denote the corresponding diffeomorphism of Rm,

and define σ1 and w1 similarly. Then by assumption x1 ◦ x−1 is a dif-

feomorphism where defined, and hence so is τ := z−1
1 ◦ x1 ◦ x−1 ◦ z.

Moreover from (6.7) we can write τ(0, u) = (0, τ1(u)) for τ1 a diffeo-

morphism defined on a neighbourhood of 0 in Rm−n. Thus

w1 ◦ w−1 = −1 ◦ τ ◦  = l1

is a diffeomorphism where defined. This shows that we have built a

smooth structure on L.

4. To complete the proof, we show that the inclusion ι : L ↪→ M is

smooth. For this we note that with x, w and z as above,

x ◦ ι ◦ w−1 = x ◦ ι ◦ σ = z ◦ ,

which is smooth. This completes the proof.

The Implicit Function Theorem also generalises to constant rank

maps.

Theorem 6.20 (Constant Rank Implicit Function Theorem). Suppose

ϕ : M → N has constant rank k. Take q ∈ ϕ(M) and set L := ϕ−1(q).

Then L is a topological manifold of dimension m − k. Moreover there

exists a smooth structure on L which makes L into a smooth embed-

ded submanifold of M , and if i : L ↪→ M denotes the inclusion then for

all p ∈ L, one has

Di(p)(TpL) = kerDϕ(p).

The proof of Theorem 6.20 proceeds in an analogous fashion to that

of Theorem 6.10, only starting with Theorem 6.18 instead.

We conclude by giving a brief sketch of the proof of Sard’s Theorem

6.17.

Proof of Sard’s Theorem 6.17. The classical version of Sard’s Theorem A nice proof can be found in Chapter
3 of Milnor’s classic textbook “Topol-
ogy from a Differentiable Viewpoint”.

says that if O ⊂ Rm is an open set and f : O → Rn is a smooth map,

then the set of critical values of f has measure zero in Rn. Since man-

ifolds are second countable they can covered by countably many open

sets that are diffeomorphic to balls in Euclidean spaces, cf. Propo-

sition 1.32. As the countable union of measure zero sets is also of

measure zero, the result follows.

Sard’s Theorem is the main reason we require that manifolds have

at most countably many components (cf. Proposition 1.32) – the

theorem is false if this condition is not imposed.
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LECTURE 7

The Whitney Theorems

In this lecture we will prove two famous theorems of Whitney. The

first states that every smooth manifold can be embedded inside Eu-

clidean space. Recall a continuous function f : X → Y between two

topological spaces is proper if the preimage of any compact set in

Y is compact in X. If X is compact and Y is Hausdorff then every

continuous function is proper.

Theorem 7.1 (The Strong Whitney Embedding Theorem). Let M

be a smooth manifold of dimension m. Then there exists a proper

embedding ϕ : M → R2m.

Theorem 7.1 is a genuinely difficult result. It is much easier to

prove that M always embeds in R2m+1 (this is sometimes called the

“Weak Whitney Embedding Theorem”). This is still too hard for us,

however, so we will prove this only for the special case of compact

manifolds. We call this the “Baby Whitney Embedding Theorem”.

Theorem 7.2 (The Baby Whitney Embedding Theorem). Let M

be a compact smooth manifold of dimension m. Then there exists a

(proper) embedding ϕ : M → R2m+1.

The “proper” is in parentheses, as this is automatic when M is

compact.

Proof. We prove the result in four steps.

1. We begin by showing that M admits an embedding into some

Euclidean space Rn (this method will typically produce a very large

n). In the next step we will reduce n down to 2m + 1. Since M is

compact we can find a finite cover {V1, . . . , Vk} of open sets, with the

property that there exist charts (Ui, xi) for i = 1, . . . , k with V i ⊂ Ui.

Now let χi : M → R denote a bump function (whose existence is

guaranteed by Lemma 3.2) such that χi(V i) ≡ 1, 0 ≤ χi(p) ≤ 1 for

all p ∈ M and supp(χi) ⊂ Ui. Set fi = χi xi, which we think of as a

function from M → Rm by extending it to be zero outside of Ui. Then

define

ϕ : M → R(m+1)k, ϕ(x) :=
(
f1(x), . . . , fk(x), χ1(x), . . . , χk(x)

)
.

We claim that ϕ is an injective immersion. Since M is compact, it

then follows from Problem C.3 that ϕ is an embedding. To see that ϕ

is injective, suppose ϕ(p) = ϕ(q). Since the sets {Vi} cover M , there is

some i such that p ∈ Vi, and hence χi(p) = 1. Since ϕ(p) = ϕ(q), we

also have χi(q) = 1, and thus q ∈ supp(χi) ⊂ Ui. Then also

xi(p) = χi(p)xi(p) = fi(p) = fi(q) = χi(q)xi(q) = xi(q).

But xi is a diffeomorphism, and hence in particular injective. Thus

p = q.
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Finally, to check ϕ is an immersion, pick an arbitrary p ∈ M . Then

p ∈ Vi for some i. Since χi ≡ 1 on a neighbourhood of p, we have

Dfi(p) = Dxi(p), which is injective. Thus also Dϕ(p) is injective. This

completes the proof of the weak version we wished to prove, where we

took n = (m+ 1)k.

2. Replacing M by ϕ(M), we now have M ⊂ Rn. Assume that

n > 2m + 1, otherwise there is nothing to prove. Think of Rn−1 as

sitting inside Rn as the hyperplane
{

(u1, . . . , un) | un = 0
}

. Given

ξ ∈ Rn \ Rn−1, let ρξ : Rn → Rn−1 denote the projection parallel to ξ,

that is, the unique linear map with

ker ρξ = R·ξ.

We will look for unit vectors ξ with the property that

ρξ|M : M → Rn−1

is an embedding. Using Problem C.3 again, it suffices to show that

ρξ|M is an injective immersion. But what does that mean in this con-

text? In words, saying that ρξ|M is injective is saying that ξ is not Throughout this lecture, the norm ‖ · ‖
denotes the standard Euclidean norm.

This is true both for points in M and
for points in TM ⊂ TRn = R2n.

parallel to any secant of M , that is,

ξ 6= p− q
‖p− q‖

, ∀ p, q ∈M. (7.1)

The kernel of the linear map ρξ is the line through ξ. Since ρξ is

linear, its derivative is the same linear map. Thus a tangent vector

ζ ∈ TpM lies in the kernel of Dρξ(p) if and only if ζ is parallel to ξ.

We therefore see that ρξ is an immersion if

ξ 6= ζ

‖ζ‖
, ∀ ζ ∈ TpM, ∀ p ∈M. (7.2)

3. We will use Sard’s Theorem 6.17 to prove a ξ exists such that

both (7.1) and (7.2) are satisfied. For (7.1), consider the map

ψ : (M ×M) \∆→ Sn−1, (p, q) 7→ p− q
‖p− q‖

.

Here ∆ is the diagonal inside M ×M :

∆ := {(x, x) | x ∈M} .

Clearly ξ satisfies (7.1) if and only if ξ is not in the image of ψ. Note

that (M ×M) \∆ is an open set of M ×M , and thus (M ×M) \∆ is a

manifold of dimension 2m by Lemma 1.15 and Problem A.3. The map

ψ is visibly smooth. Since 2m < n− 1 = dimSn−1, by Sard’s Theorem

6.17 the image of ψ is nowhere dense in Sn−1. Thus in particular, any

non-empty open set of Sn−1 contains a point ξ satisfying (7.1).

Now we consider (7.2). It suffices to check that it holds for all vec-

tors ζ of norm 1. To this end we focus on the unit tangent bundle

SM :=
{

(p, ζ) ∈ TM | ‖ζ‖ = 1
}
.

We will come back to unit tangent bundles next semester when we

discuss Riemannian geometry. To see this is a manifold, consider
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the map h : TRn → R given by h(p, ζ) = ‖ζ‖2. It is easy to see

that 1 is a regular value of h|TM and that SM = h|−1
TM (1). Thus by

the Implicit Function Theorem 6.10, SM is a manifold of dimension

2m − 1. Moreover since M is compact so is SM . Since M ⊂ Rn, we

have See part (i) of Problem D.1 if you

are worried about the identification
TRn ∼= R2n.

TM ⊂M × Rn ⊂ R2n = TRn

and similarly SM is identified with a subset of M × Sn−1. Projecting

onto the second factor, this gives us a map

SM →M × Sn−1 → Sn−1

which geometrically takes a unit vector based at a point in M and

translates it to a unit vector based at the origin in Rn. Using Sard’s

Theorem 6.17 again, the image of the composite map SM → Sn−1 is

nowhere dense. Since SM is compact, it follows that the complement

– let us call it W – of the image is a dense open set in Sn−1. Thus W

meets Sn−1 ∩
(
Rn \ Rn−1

)
in an non-empty open set W0. From what

we already proved, such a non-empty open set W0 contains a vector ξ

which is not in the image of ψ.

4. We now complete the proof. The choice of ξ found above gives

us an embedding ρξ : M → Rn−1. If n − 1 = 2m + 1 we are done,

if not then n − 1 > 2m + 1, and the same argument again works to

provide a new embedding in Rn−2. By induction, we eventually obtain

our desired embedding M → R2m+1.

Remark 7.3. Extending Theorem 7.2 to cover all smooth manifolds

(not just compact ones) is not that much more work. We emphasise This appears as bonus problem on

Problem Sheet D.though that the stronger result (Theorem 7.1, where 2m+ 1 is reduced

down to 2m) is much harder.

Theorem 7.1 implies one could equivalently define a manifold as an

embedded submanifold of Euclidean space.

Definition 7.4 (Alternative definition of a manifold). Let m ≤ n. This is how manifolds are defined in

most “baby” courses on differential

geometry.
A subset M ⊂ Rn is called a smooth manifold of dimension m if

each point p in M has a neighbourhood V in Rn such that M ∩ V is

diffeomorphic to an open set in Rm.

In more detail, this means: for each point p ∈ M there exists an

open set O ⊂ Rm and a neighbourhood V ⊂ Rn of p, together with an

injective smooth map σ : O → Rn of maximal rank m everywhere such

that σ(O) = M ∩ V and x := σ−1|M∩V : M ∩ V → O is continuous

(where M is given the subspace topology of Rn). One usually calls σ

a parametrisation of M . The inverse x of σ is then a chart on M

in the normal sense. Note that if m = n then this forces M to be an

open subset of Rn, and hence if M is compact then one necessarily has

m < n.

Remark 7.5. Definition 7.4 is superficially much simpler than our

original definition (Definition 1.13)—there is no need to first define

topological manifolds, or even mention metrisability and separability.

The equivalence of the definitions follows from Theorem 7.1 and the
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existence of slice charts (Definition 6.6). Moreover it is immediate

from Definition 7.4 that manifolds are metrisable, since any subset of a

metric space inherits a metric that determines its subspace topology.

You might therefore reasonably ask: was there any point in the

abstract definition? The answer is of course “yes”, as we will

now try to explain.

An embedded submanifold of Euclidean space should really be

thought of as a pair (M,ϕ), where M is an (abstract) smooth mani-

fold and ϕ is a choice of embedding. However it is possible to embed a

given manifold in many different ways, and moreover if you can embed

M in Rn then you can also embed M in Rk for any k ≥ n. A different

choice of embedding can lead to dramatically different geometry (this

will be particularly evident when we study Riemannian geometry next

semester). Thus when proving results about embedded submanifolds,

one always needs to ask the question: is this proof really a statement

about the manifold itself, or does it depend on the embedding? This

can often vastly complicate the proofs. The upshot is that having

a more complicated definition leads to simpler proofs, and hence in

the long run – since you only need to define things once but there

are many theorems to prove! – it is better to work with the abstract

definition whenever possible.

Still another reason to prefer the abstract definition is the follow-

ing: One of the key applications of differential geometry in theoretical

physics is Einstein’s theory of General Relativity. Here one views

the universe as 4-dimensional (curved) space-time. In the finite uni-

verse model, the spacial part of space-time is taken to be compact

3-dimensional hyperbolic manifold. Since (by definition) the universe

is “everything”, it doesn’t make any sense at all to require the theory

to begin by embedding the universe in a larger Euclidean space. . .

We now aim to prove another theorem, also due to Whitney, called

the Whitney Approximation Theorem, that allows us replace a contin-

uous map with a smooth one. We begin with the following statement,

which says a continuous function from a manifold to a Euclidean space

can be approximated arbitrarily well by a smooth one.

Proposition 7.6. Let M be a smooth manifold and let h : M → Rn

be a continuous function. Given any positive continuous function

δ : M → R, there exists a smooth function f : M → Rn such that

‖f(p)− h(p)‖ < δ(p), ∀ p ∈M.

Proof. Fix p ∈M and let Up be a neighbourhood of p such that for all

q ∈ Up, one has

δ(q) >
1

2
δ(p), ‖h(q)− h(p)‖ < 1

2
δ(p).

Such a neighbourhood exists as h and δ are assumed to be continuous.
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Then in particular we have that

‖h(q)− h(p)‖ < δ(q), ∀ q ∈ Up.

The collection {Up | p ∈M} is an open cover of M . Let {κp | p ∈M}
be a partition of unity subordinate to this open cover and define

f : M → Rn, f(q) :=
∑
p∈M

κp(q)h(p).

Recall that the right-hand side is actually a finite sum at every point,

since {supp(κp)} is locally finite, and hence f is smooth. Moreover

since
∑
p κp ≡ 1 and supp(κp) ⊂ Up, one has for any q ∈M that

‖f(q)− h(q)‖ =
∥∥∥ ∑
p∈M

κp(q)h(p)− h(q)
∥∥∥

=
∥∥∥ ∑
p∈M

κp(q)h(p)−
∑
p∈M

κp(q)h(q)
∥∥∥

≤
∑
p∈M

κp(q)‖h(q)− h(p)‖

<
∑
p∈M

κp(q)δ(q) = δ(q).

This completes the proof.

Our aim now is to improve Proposition 7.6 to the case where the

target space is another manifold, not a Euclidean space. The “ob-

vious” tactic (given that we just proved the Whitney Embedding

Theorem) is to embed the target manifold in a Euclidean space, and

then approximate via the result we just proved. Unfortunately this

doesn’t quite work, as even though the function f can be chosen to

be very close to h, it may still be the case that f “misses” our newly

embedded manifold (remember an embedded manifold is not an open

subset unless it is of full dimension). Thus we need a way to correct

this. We will do this by making use of tubular neighbourhoods, which

will be defined shortly.

Definition 7.7. Let M be an embedded submanifold of Rn. We

define the normal space to M at p to be the (n − m)-dimensional

subspace NorpM ⊂ TpRn consisting of all vectors that are orthogonal

to TpM with respect to the Euclidean dot product. We define the

normal bundle of M as the set

NorM := {(p, ξ) ∈ TRn = Rn × Rn | p ∈M, ξ ∈ NorpM} .

On Problem Sheet C you are asked to prove that NorM is an em-

bedded n-dimensional submanifold of TRn = Rn × Rn. We define a

map

T : NorM → Rn, T (p, ξ) := p+ ξ.

We emphasise that this only makes sense as M is embedded in Rn.

In general one cannot add points together on a manifold! The map

T is smooth, since it is the restriction to NorM of the addition map

Rn × Rn → Rn. If OM denotes the zero section: The explanation for the name “zero

section” will come in Lecture 10,
when we discuss vector bundles.
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OM := {(p, 0) | p ∈M} .

then one has

T (OM ) = M.

Thus it is reasonable to hope that a small neighbourhood of OM in

NorM gets mapped under T to a small neighbourhood of M in Rn.

This motivates the following definition.

Definition 7.8. A tubular neighbourhood of M is a neighbour-

hood U of M in Rn which is the diffeomorphic image under T of an

open subset V ⊂ NorM of the form

V =
{

(p, ξ) ∈ NorM | ‖ξ‖ < ε(p)
}
, (7.3)

where ε : M → R is a strictly positive continuous function.

It is a non-trivial fact that such neighbourhoods always exist:

Theorem 7.9 (The Tubular Neighbourhood Theorem). Every embed-

ded submanifold M ⊂ Rn admits a tubular neighbourhood.

The proof is deferred to the bonus section below.

Remark 7.10. Next semester we will define another “tubular neigh-

bourhood” associated to compact submanifold M of any Riemannian

manifold N . This is more general than the construction discussed

here, since N does not have to be equal to a Euclidean space.

Definition 7.11. Let Y ⊂ X be a subspace of a topological space. A

retraction of X onto Y is a continuous map r : X → Y such that r|Y
is the identity map on Y .

Corollary 7.12. Let M ⊂ Rn be an embedded submanifold, and

let U be a tubular neighbourhood of M . There exists a smooth map

r : U →M which is both a retraction and a submersion.

Proof. Let T : V ⊂ NorM → U be our tubular neighbourhood,

and write π : NorM → M for the footpoint map that sends a pair

(p, ξ) to p. Define r : U → M by r := π ◦ T−1|U . Since T |V is a

diffeomorphism and π is clearly a submersion, it follows that r is a

submersion. Finally since T (p, 0) = p, we see that

r(p) = π ◦ T−1(p) = p,

and hence r is a retraction.

Recall that if h0, h1 : X → Y are two continuous maps, we say they

are homotopic if there exists a continuous map H : X × [0, 1] → Y

such that H(·, 0) = h0 and H(·, 1) = h1. We can now state and

prove another result due to Whitney. We will use this result later on

in the course when we discuss the homotopy invariance of de Rham

cohomology in Lecture 23.

Theorem 7.13 (The Whitney Approximation Theorem). Let h : M →
N be a continuous map between two smooth manifolds. Then h is

homotopic to a smooth map ϕ : M → N .
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Proof. By the Whitney Embedding Theorem 7.1, we may assume

that N is a properly embedded submanifold of some Euclidean space

Rn. Let U be a tubular neighbourhood of N , and let r : U → N be

a smooth submersive retraction (whose existence is guaranteed by

Corollary 7.12). Given p ∈ N , let

0 < ε(p) := sup
{
ε ≤ 1 | Bε(p) ⊂ U

}
,

where Bε(p) denotes the ball of radius ε about p in the Euclidean

norm. We claim that ε is actually a continuous function. To see this

let p, q ∈ N and first suppose that ‖p − q‖ < ε(p). Then for δ :=

ε(p)−‖p−q‖, one has by the triangle inequality that Bδ(q) ⊂ Bε(p)(p),
and hence ε(q) ≥ ε(p)− ‖p− q‖. Thus if ‖p− q‖ < ε(p) then

ε(p)− ε(q) ≤ ‖p− q‖.

On the other hand, if ε(p) ≤ ‖p − q‖ then since ε(q) > 0 by definition,

one trivially also has

ε(p)− ε(q) ≤ ‖p− q‖.

Reversing the roles of p and q shows that

‖ε(p)− ε(q)‖ ≤ ‖p− q‖,

which proves ε is continuous. Now define

δ := ε ◦ h : M → R.

Then δ is a continuous positive function, and hence by Proposition

7.6, there exists a smooth function f : M → Rn such that

‖f(p)− h(p)‖ < δ(p), ∀ p ∈M.

Define

H : M × [0, 1]→ N, H(p, t) := r((1− t)h(p) + tf(p)).

This is well-defined due to our choice of function δ, which implies that

(1 − t)h(p) + tf(p) ∈ U for all t ∈ [0, 1]. Since r is the identity on

N ⊂ U and h takes values in N , we see that H(·, 0) = h. Moreover

if ϕ := r ◦ f then ϕ is smooth and H(·, 1) = ϕ. This completes the

proof.

Bonus Material for Lecture 7

In this bonus section we make some additional remarks about the

Strong Whitney Embedding Theorem 7.1, prove the Tubular Neigh-

bourhood Theorem, and finally discuss an improvement to the Whit-

ney Approximation Theorem.
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Remarks 7.14.

(i) The Whitney Embedding Theorem is sharp in the sense that if

m = 2k then RPm cannot be embedded in R2m−1. This can be

proved using characteristic classes. We will come back to this in

Differential Geometry II.

(ii) There are various other versions of the Whitney Embedding The-

orem. For instance, if M is a compact orientable smooth manifold

of dimension m (we will define orientability in Lecture 24) then

M embeds inside R2m−1. This does not contradict the previous

statement, since for m even RPm is not orientable.

(iii) In many cases the upper bound can be improved—for instance, we

in Lecture 1 we saw that Sm embeds into Rm+1. Another result

(due to Haefliger) is that if M is a compact smooth manifold of

dimension m whose homotopy groups πiM vanish for i ≤ k then if

2k + 3 ≤ m one can embed M in R2m−k. In general, if eM denotes

the optimal n such that M embeds inside Rn then computing eM is

an open problem for many manifolds M .

Let us now prove the Tubular Neighbourhood Theorem.

Proof of the Tubular Neighbourhood Theorem 7.9. We prove the

result in four steps.

1. We will prove that DT (p, 0) is invertible at every point (p, 0) ∈
OM . Since T |OM : OM → M is obviously a diffeomorphism, one sees

that DT (p, 0) maps T(p,0)OM ⊂ T(p,0) NorM isomorphically onto

TpM . Secondly, if we restrict T to the fibre NormpM , T just becomes

the affine map ξ 7→ p + ξ, and thus DT (p, 0) maps T(p,0) NormpM

isomorphically onto NormpM by Lemma 4.15.

Thus by the Inverse Function Theorem 5.10 we see that for each

p ∈M there exists an εp > 0 such that if

U(p, εp) :=
{

(q, ξ) ∈ NorM | ‖p− q‖ < εp and ‖ξ‖ < εp
}

then T |U(p,εp) is a diffeomorphism. To complete the proof we need to

show that there is open set of the form (7.3) on which T is a global

diffeomorphism.

2. Let ε : M → R be the function that assigns to a point x ∈ M
the supremun of all ε ≤ 1 such that T is a diffeomorphism on U(x, ε).

Then ε is strictly positive, as ε(p) ≥ εp. We now claim that ε is

actually a continuous function. This argument is essentially identical

to the proof of the Whitney Approximation Theorem, but we give it

again anyway. So suppose p, q ∈ M and suppose that ‖p − q‖ < ε(p).

Then for δ := ε(p) − ‖p − q‖, one has by the triangle inequality

that U(y, δ) ⊂ U(p, ε(p)), and hence ε(q) ≥ ε(p) − ‖p − q‖. Thus if

‖p− q‖ < ε(p) then

ε(p)− ε(q) ≤ ‖p− q‖.

On the other hand, if ε(p) ≤ ‖p − q‖ then since ε(q) ≥ 0 by definition,

one trivially also has

ε(p)− ε(q) ≤ ‖p− q‖.
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Reversing the roles of p and q shows that

|ε(p)− ε(q)| ≤ ‖p− q‖,

which proves ε is continuous.

3. Set

V :=

{
(p, ξ) ∈ NorM | ‖ξ‖ < 1

2
ε(p)

}
.

We claim that T is injective on V . Indeed, suppose (p, ξ) and (q, ζ)

both belong to V and satisfy

p+ ξ = T (p, ξ) = T (q, ζ) = q + ζ.

Without loss of generality, assume ε(q) ≤ ε(p). Then

‖p− q| = ‖ξ − ζ‖
≤ ‖ξ‖+ ‖ζ‖

≤ 1

2
ε(p) +

1

2
ε(p)

= ε(p),

where the first equality used p + ξ = q + ζ. Thus both (p, ξ) and (q, ζ)

belong to U(p, ε(p)). But on this set T is injective by construction.

Thus (p, ξ) = (q, ζ) as required.

4. We complete the proof. Set U := T (V ). Then U is open as T is

a local diffeomorphism. Since T |V is injective, we see that T : V → U

is smooth bijection, and hence (as T is a local diffeomorphism), also a

diffeomorphism. This completes the proof.

We conclude this lecture with a a couple of additional remarks

about the Whitney Approximation Theorem. First, a definition.

Definition 7.15. Suppose M and N are smooth manifolds and A ⊂
M is an arbitrary set. We say a map ϕ : A → N is smooth on A if it

can be locally smoothly extended, i.e. if for every p ∈ A there exists a

neighbourhood U of p in M and a smooth map ϕ̃ : U → N such that

ϕ̃|U∩A = ϕ.

With a little bit more work, Theorem 7.13 can be improved to give

the following statement:

Theorem 7.16. Suppose h : M → N is a continuous map between two

smooth manifolds. Suppose A ⊂ M is a closed set and h|A is smooth

in the sense of Definition 7.15. Then h is homotopic to a smooth map

ϕ such that ϕ|A ≡ h|A. In fact, h and ϕ are homotopic via a homo-

topy H with the property that H(p, t) = h(p) for all t ∈ [0, 1].

One can also play the same game with smooth homotopies. Two

smooth maps ϕ,ψ : M → N are smoothly homotopic if there exists

a smooth map M×[0, 1]→ N – note we are using Definition 7.15 again

here to make sense of this – such that H(·, 0) = ϕ and H(·, 1) = ψ.
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Theorem 7.17 (The Homotopy Whitney Approximation Theorem). If

ϕ,ψ : M → N are two smooth maps between smooth manifolds which

are homotopic (in the normal sense), then they are also smoothly

homotopic. Moreover the given normal homotopy H from ϕ to ψ

is stationary on some closed set A then the approximating smooth i.e. H(p, t) = ϕ(p) for all p ∈ A – note

this implies ϕ|A ≡ ψ|A.homotopy can also be chosen to be stationary on A.



Will J. Merry

LECTURE 8

Vector Fields

In this lecture we will define vector fields, which are smooth sec-

tions of the tangent bundle. We first introduce the following standard We deliberately chose to delay intro-

ducing this convention until now, so
that you could all see how cumber-

some proofs with multiple summation

signs are (eg. Theorem 5.6), and thus
fully appreciate the new convention!

notational convention, which will hold for the remainder of the course.

The Einstein Summation Convention. If the same index

appears exactly twice in any monomial, written once as an

upper index and once as a lower index, then that term is un-

derstood to be summed over all possible values of that index.

Here are two examples:

(i) If ei denotes the standard ith basis vector in Rm, then we

write

v = ai ei as an abbreviation for v =

m∑
i=1

ai ei

(ii) If M is an m-dimensional smooth manifold, p ∈ M , and (xi)

are local coordinates about p, then for ξ ∈ TpM we write

ξ = ai
∂

∂xi

∣∣∣
p

as an abbreviation for ξ =

m∑
i=1

ai
∂

∂xi

∣∣∣
p

Here ∂
∂xi is understood to have i as a lower index, despite

the fact that xi has i as an upper index, because it is on the

bottom of a fraction.

This convention will vastly simplify equations throughout the

course. For instance, when we start to talk about tensors, we

will have cause to consider quantities which have local expres-

sions such as

A = Aijkl
∂

∂xi
⊗ ∂

∂xj
⊗ dxk ⊗ dxl,

which is much simpler than writing this abomination

A =

m∑
i=1

m∑
j=1

m∑
k=1

m∑
l=1

Aijkl
∂

∂xi
⊗ ∂

∂xj
⊗ dxk ⊗ dxl.

The caveat is that in order for the convention to “work”, the

choice of whether to write a given quantity as an upper index

or a lower index is not arbitrary.

Definition 8.1. Let M be a smooth manifold and let W ⊂ M be a

non-empty open set (possibly equal to all of M). A vector field X on

W is a smooth map X : W → TM (where we regard W as a smooth

Last modified: July 17, 2021.
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manifold in its own right) that satisfies the section property:

π(X(p)) = p, ∀ p ∈W, (8.1)

where π : TM → M is the footpoint map. We denote by X(W ) the set

of all vector fields on W .

Convention. Vector fields will typically be written with capital

letters: X,Y and Z.

Equation 8.1 is equivalent to requiring that X(p) ∈ TpM for each

p ∈ W . Thus a vector field can be thought of as a smoothly varying

choice of tangent vector at each point.

Let us give various equivalent ways of expressing what smooth

means in this context. Let x : U → O be a chart on M , and suppose

X : U → TM is any function satisfying the section property (8.1) (not

necessarily smooth). Let p ∈ U . Since
{

∂
∂xi

∣∣
p
| i = 1, . . . ,m

}
is a basis

of TpM , we can write Note here we are using the Einstein

Summation Convention to omit the∑m
i=1.

X(p) = Xi(p)
∂

∂xi

∣∣∣
p
, (8.2)

for some real numbers Xi(p). If we do this for every point p ∈ U , we

can think of the Xi as defining functions Xi : U → R. In general these

functions Xi need not even be continuous, but as we will shortly see, if

X is smooth (i.e. a vector field on U) then the Xi are actually smooth

functions.

Here is yet another way to think about it. Suppose f ∈ C∞(U),

and let as before X denote any map U → TM satisfying the section

property. Then for any given p ∈ U , thinking of X(p) as a derivation

of C∞(U) at p, we can feed f to X(p) to get a number X(p)(f). This

gives us a function X(f) : U → R:

X(f)(p) := X(p)(f), ∀ p ∈ U. (8.3)

Once again, if X is just any map satisfying the section property then

X(f) will not in general even be continuous. However if X is smooth

(i.e. a vector field) then X(f) is smooth.

Proposition 8.2. Let M be a smooth manifold and let W ⊂ M be a

non-empty open set. Let X : W → TM be any function satisfying the

section property (8.1). Then the following are equivalent.

(i) X is a vector field on W .

(ii) If x : U → O is any chart on M with U ⊂ W then the functions Xi

defined in (8.2) belong to C∞(U).

(iii) If V ⊂ W is any open set (possibly equal to all of W ) and f ∈
C∞(V ) then the function X(f) defined by (8.3) also belongs to

C∞(V ).

Proof. We begin with proving that (i) ⇔ (ii). Let p ∈ W , and let

x : U → O be a chart about p. By definition, the function Xi defined
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in (8.2) is smooth if and only if Xi ◦ x−1 : O → R is smooth in the

normal sense. Note that by Proposition 3.8 and the definition of dxi

the function Xi ◦ x−1 can alternatively be written as The right-hand side of this equation
should be understood as the function

q 7→ dxi
x−1(q)

(
X(x−1(q))

)
for q ∈ O.Xi ◦ x−1 = dxi ◦X ◦ x−1 (8.4)

Now let us recall from the proof of Theorem 5.6 that a chart x : U →
O on M defines a chart x̃ : π−1(U)→ O × Rm on TM by Note how prettier this formula is with

the Einstein Summation Convention
in effect.x̃(p, ξ) =

(
x(p), dxip(ξ) ei

)
, p ∈ U, ξ ∈ TpM.

By definition, X is smooth at p if and only if the composition

x̃ ◦X ◦ x−1 : O → O × Rm

is smooth at x(p). Explicitly this is the map

O → O × Rm, q 7→
(
q, dxix−1(q)

(
X(x−1(q))

)
ei

)
. (8.5)

Applying (8.4) tells us that (8.5) can equivalently be written as

O → O × Rm, q 7→
(
q,Xi(x−1(q))ei

)
. (8.6)

Thus (8.6) is smooth if and only if Xi ◦ x−1 is smooth for each i =

1, . . . ,m. This proves (i) ⇔ (ii).

Now let us prove (ii) ⇒ (iii). Let V ⊂ W and let f ∈ C∞(V ).

Choose a chart x : U → O with U ⊂ V . Then for p ∈ U , we have that

X(f)(p) = Xi(p)
∂

∂xi

∣∣∣
p
(f)

The function p 7→ ∂
∂xi

∣∣
p
(f) is smooth – this is just the function p 7→

Di(f ◦ x−1)(x(p)). By (ii) the Xi are also smooth functions, and hence

X(f) is a finite sum of the pointwise product of smooth functions

and hence is smooth. Thus X(f) is smooth on U . But since U was

arbitrary and smoothness is a local property, it follows that X(f) is

smooth on all of V . This proves (iii).

Finally we note that (ii) is a special case of (iii): if x : U → O
is a chart about p with local coordinates (xi), then the function Xi

defined in (8.2) is simply the function X(xi), and thus (iii) implies Xi

is smooth. This completes the proof.
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Warning: One must be careful with notation here: X(xi)

is a function defined on X. Despite the suggestive notation,

however, this is not the “composition” X ◦ xi. Indeed, the ex-

pression X ◦xi makes no sense at all, since xi takes values in R,

and X cannot eat numbers. Thus

X(xi) 6= X ◦ xi.

In contrast, the composition X ◦ x−1 from the left-hand side

of (8.4) really does mean composition. Moreover one cannot

“feed” x−1 to X to produce a function X(x−1), since x−1 is

not a smooth function on M .

The confusion could be avoided by simply declaring that we

only use the notation X(f) in the sense of a vector field eating

a function, and only use the notation X ◦ x−1 to denote actual

composition. In practice, however, whilst we will never write

X ◦f to denote the function X(f), it is too cumbersome to only

use composition notation for expressions such as X ◦ x−1. See

for instance the right-hand sides of (8.5) and (8.6).

Thus in the future whenever you see the notation X(w) for

some object w, you should double check exactly what w is,

before deciding on how to interpret X(w).

Example 8.3. Suppose x : U → O is a chart on M with local coor-

dinates (xi). Then we can think of ∂
∂xi as defining a vector field on U

via:
∂

∂xi
(p) :=

∂

∂xi

∣∣∣
p
.

It is immediate from Proposition 8.2 that ∂
∂xi is smooth.

We now introduce a notational convention that is both totally

logical and somewhat confusing at the same time:

Definition 8.4. If f ∈ C∞(U) then we denote the function ∂
∂xi (f)

from (8.3) with X = ∂
∂xi by ∂f

∂xi . Thus ∂f
∂xi is the function

∂f

∂xi
(p) :=

∂

∂xi
(p)(f) =

∂

∂xi

∣∣∣
p
(f) = Di(f ◦ x−1)(x(p)).

If our given manifold is an open subset of Rm and x is the identity

chart with local coordinates (ui) then the notation ∂f
∂ui is consistent

with the “usual” definition of partial derivative.

Let us now continue with the general case, where W ⊂ M is any

non-empty open subset. The space X(W ) is a real vector space under

pointwise addition:

(X + Y )(p) := X(p) + Y (p), (cX)(p) := cX(p)

In fact, X(W ) forms a module over the ring C∞(W ) by defining

(fX)(p) := f(p)X(p), X ∈ X(W ), f ∈ C∞(W ).
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In order for this to be well-defined, one needs to know that eg. X + Y

is smooth and fX is smooth. This however is immediate from Propo-

sition 8.2.

Remark 8.5. Pay attention to the ordering. If X ∈ X(W ) and f ∈
C∞(W ) then X(f) belongs to C∞(W ) whereas fX belongs to X(W )!

We now extend Definition 3.1 to derivations that are not based at a

point.

Definition 8.6. Let M be a smooth manifold and let W ⊂ M be a

non-empty open set. A derivation on C∞(W ) is a linear map

X : C∞(W )→ C∞(W )

satisfying the derivation property

X (fg) = fX (g) + gX (f), ∀ f, g ∈ C∞(W ).

Let us temporarily denote by Xderiv(W ) the set of derivations on

W . Observe that Xderiv(W ) is another module over C∞(W ). It fol-

lows from Proposition 3.3 that any vector field X ∈ X(W ) defines a

derivation X ∈ Xderiv(W ) via

X (f) := X(f)

In fact, the converse is true.

Proposition 8.7. Let M be a smooth manifold and let W ⊂ M be

a non-empty open set. Then Xderiv(W ) and X(W ) are isomorphic as

modules over C∞(W ).

Proof. Suppose X is a derivation on C∞(W ). Fix p ∈ W . Then X
defines a derivation on C∞(W ) at p, which we suggestively write as

X(p), via the formula

X(p)(f) := X (f)(p), ∀ f ∈ C∞(W ).

Proposition 3.3 tells us that we can then think of X as defining a map

W → TM via p 7→ X(p). We claim that X is smooth, and hence

defines a vector field on W . For this by part (iii) of Proposition 8.2,

we need only check that X(f) is smooth for any f ∈ C∞(W ). But by

construction X(f) = X (f), which is smooth by assumption.

From now on we will identify a vector field X ∈ X(W ) with the

corresponding derivation X of C∞(W ) and write both with Latin

letters X. We will also abandon the notation Xderiv(W ) and just write

X(W ). Our next goal is to turn X(W ) into an algebra, that is, to have

a bilinear operation

X(W )× X(W )→ X(W ).

The naive guess would be to try composition of derivations:

X ◦ Y : C∞(W )→ C∞(W ), (X ◦ Y )(f) := X(Y (f)).
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Unfortunately, this is not a derivation. Indeed, if we take f, g ∈
C∞(W ) and compute:

(X ◦ Y )(fg) = X
(
fY (g) + gY (f)

)
=
(
f(X ◦ Y )(g) + g(X ◦ Y )(f)

)
+
(
X(f)Y (g) +X(g)Y (f)

)
However, observe that the “error” term X(f)Y (g) +X(g)Y (f) is sym-

metric in X and Y . This means that if we consider the commutator

[X,Y ] := X ◦ Y − Y ◦X

then the error term cancels, and thus [X,Y ] is a derivation. We have

thus justified the following definition.

Definition 8.8. Let X,Y ∈ X(W ). Then the commutator [X,Y ] :=

X ◦ Y − Y ◦X is another derivation. We call [X,Y ] the Lie bracket

of X and Y .

Remark 8.9. Warning: A few authors define the Lie bracket with Notably, Joel Robbin and Dietmar
Salamon use the other sign convention

in their wonderful lecture notes.
the opposite sign: [X,Y ] := Y ◦ X − X ◦ Y . From a “high-level”

point of view, this other sign convention is actually the “correct”

one, but this requires a little bit of infinite-dimensional Lie group

theory to understand, as we will explain at the end of Lecture 13. The

convention we are using, namely [X,Y ] := X ◦ Y − Y ◦X, is consistent

with the majority of the literature.

The next proposition gives a formula for [X,Y ] in coordinates. The

proof is deferred to Problem Sheet D.

Proposition 8.10. Let (U, x) be a chart on M with local coordinates

(xi) and let X,Y ∈ X(U). Write X = Xi ∂
∂xi and Y = Y i ∂

∂xi . Then

[X,Y ] =

(
Xi ∂Y

j

∂xi
− Y i ∂X

j

∂xi

)
∂

∂xj
,

where ∂Y j

∂xi and ∂Xj

∂xi are the functions from Definition 8.4.

In order to explain the name, we need an algebraic definition.

Definition 8.11. A (real) Lie algebra is a vector space g endowed

with a bilinear operation called the Lie bracket

g× g→ g, (v, w) 7→ [v, w]

which in addition is antisymmetric, [v, w] = −[w, v] and satisfies the

Jacobi identity

[u, [v, w]] + [v, [w, u]] + [w, [u, v]] = 0, ∀u, v, w ∈ g.

Thus a Lie algebra is a non-associative algebra. The name “Lie”

comes from the Norwegian mathematician Sophus Lie. It is traditional

to write Lie algebras using fraktur symbols g and h. The dimension

of a Lie algebra g is simply the dimension of g as a vector space. If g

is a Lie algebra then a linear subspace h ⊂ g is called a Lie subalge-

bra if [v, w] ∈ h for all v, w ∈ h.

https://people.math.ethz.ch/~salamon/PREPRINTS/diffgeo.pdf
https://en.wikipedia.org/wiki/Sophus_Lie
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Example 8.12. Here are some examples of Lie algebras:

(i) The cross product [x, y] := x × y makes R3 into a 3-dimensional Lie

algebra.

(ii) The set Mat(n) of n × n matrices is an n2-dimensional Lie algebra

under the normal commutator [A,B] := AB −BA.

(iii) If V is any vector space then we can turn V into a (rather boring)

Lie algebra by defining [v, w] := 0. Such an Lie algebra is called

abelian.

You will probably not be surprised to learn we have just con-

structed another example:

Theorem 8.13. Let M be a smooth manifold and let W ⊂ M be an

open set. Then X(W ) is a Lie algebra.

Proof. The only thing left to check is the Jacobi identity. This is

Problem D.3 on Problem Sheet D.

Remark 8.14. As long as dimM > 0 then for any non-empty open

subset W , X(W ) is an infinite-dimensional Lie algebra. To see this, we

need only note that X(W ) is a module over C∞(W ), and C∞(W ) is

an infinite-dimensional vector space (cf. Lemma 2.13).

We conclude this lecture by looking at how functions and vector

fields can be “pushed forward” with a diffeomorphism.

Definition 8.15. Let ϕ : M → N be a diffeomorphism. We define an

algebra homomorphism Warning! Many authors use the

notation ϕ∗ for the derivative Dϕ.

ϕ∗ : C∞(M)→ C∞(N), f 7→ ϕ∗(f)

where

ϕ∗(f) := f ◦ ϕ−1.

The claim that ϕ∗ is an algebra homomorphism is just the assertion

that

ϕ∗(f+g) = ϕ∗(f)+ϕ∗(g), ϕ∗(fg) = ϕ∗(f)ϕ∗(g), ϕ∗(cf) = cϕ∗(f)

for all f, g ∈ C∞(M) and c ∈ R, which is immediate from the defini-

tions.

Definition 8.16. Suppose ϕ : M → N is a diffeomorphism and

X ∈ X(M). We define the pushforward vector field ϕ∗X ∈ X(N) by

defining

(ϕ∗X)(q) := Dϕ(ϕ−1(q))X(ϕ−1(q)).

To check this is well defined, we need to know that (a) (ϕ∗X)(q) ∈
TqN for each q ∈ N , which is obvious, and (b) that ϕ∗X : N → TN is

smooth. The latter holds because it is simply the composition

N
ϕ−1

−−→M
X−→ TM

Dϕ−−→ TN

of smooth maps, and hence is smooth.
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The map ϕ∗ is again linear:

ϕ∗(X + Y ) = ϕ∗X + ϕ∗Y, ∀X,Y ∈ X(M).

Moreover one has

ϕ∗(fX) = ϕ∗(f)ϕ∗X, ∀X ∈ X(M), ∀ f ∈ C∞(M).

Remark 8.17. It may at first seem confusing that we have defined

two different maps (one from functions to functions and one from

vector fields to vector fields) and called them both ϕ∗. The reason for

this will become clear when we discuss the tensor algebra T(M) of a

manifold. Roughly speaking, the tensor algebra is a big direct sum:

T(M) =
⊕
h,k≥0

Th,k(M)

where Th,k(M) denotes the tensors of type (h, k). As we will eventu-

ally see, a tensor of type (0, 0) is simply a function, i.e.

T0,0(M) = C∞(M),

whereas a tensor of type (1, 0) is a vector field:

T1,0(M) = X(M).

Given a diffeomorphism ϕ : M → N , in Lecture 21 we will construct a

single morphism

ϕ∗ : T(M)→T(N) (8.7)

that preserves type, i.e.

ϕ∗T
h,k(M) ⊂Th,k(N).

The map ϕ∗ from Definition 8.15 is the restriction of the morphism ϕ∗
from (8.7) to T0,0(M) ⊂ T(M) and the map ϕ∗ from Definition 8.16 is

the restriction of the master ϕ∗ from (8.7) to T1,0(M) ⊂ T(M). Thus

it makes sense to denote them both by ϕ∗.

Definition 8.18. Let g and h be two Lie algebras. A Lie algebra

homomorphism is a linear map ` : g → h which respects the Lie

brackets, i.e.

[`v, `w] = `[v, w], ∀ v, w ∈ g,

where the left-hand side is the Lie bracket in h and the right-hand

side is the Lie bracket in g. A Lie algebra isomorphism is a bijec-

tive Lie algebra homomorphism whose inverse is also a Lie algebra

homomorphism.

Proposition 8.19. Let ϕ : M → N be a diffeomorphism. Then

ϕ∗ : X(M)→ X(N) is a Lie algebra isomorphism.

Proposition 8.19 is a special case of part (ii) of Problem D.6.



Will J. Merry

LECTURE 9

Flows

In this lecture we make contact with the theory of ordinary differential

equations. A vector field defines an ordinary differential equation

on a manifold, and just as in the Euclidean case, solutions to this

ordinary differential equation exist (at least for a short time) and are

unique. As with the Implicit Function Theorem, the local version

of this statement follows readily from the corresponding Euclidean

statement, but the global version is deeper. We begin by recalling two

theorems from the theory of ordinary differential equations.

Theorem 9.1 (Existence of solutions). Let O ⊂ Rm be open and let

f : O → Rm be smooth. For any p ∈ O there exists a neighbourhood V

of p and an open interval (a, b) with a < 0 < b, together with a smooth

map h : (a, b)× V → O such that:

(i) h(0, q) = q, for all q ∈ V ,

(ii) If we write We deliberately write d
dt

and not ∂
∂t

to emphasise that this is ordinary
differentiation.

d

dt
h(t, q) := lim

s→0

h(t+ s, q)− h(t, q)

s

then
d

dt
h(t, q) = f(h(t, q)), ∀ (t, q) ∈ (a, b)× V.

Theorem 9.1 can be interpreted as follows. Suppose

γ = (γ1, . . . , γm) : (a, b)→ O

is a smooth curve. One calls γ an integral curve of f = (f1, . . . , fm)

if

(γi)′(t) = f i ◦ γ(t), ∀ 1 ≤ i ≤ n. (9.1)

Thus Theorem 9.1 tells us that integral curves γ(t) = h(t, q) exist for

arbitrary initial conditions γ(0) = q, and depend smoothly on their

initial conditions. Moreover, they all locally exist for a common time

(i.e. for every q in V , the integral curve with initial condition q lasts

for all t ∈ (a, b). Next, we address uniqueness of solutions.

Theorem 9.2 (Uniqueness of solutions). Let O ⊂ Rm be open and let

f : O → Rm be smooth. If γ, δ : (a, b)→ O are two integral curves of f

with γ(t) = δ(t) for some t ∈ (a, b) then γ ≡ δ.

We will not prove either Theorem 9.1 or Theorem 9.2. They are

both hopefully familiar to you from previous courses you took on

ordinary differential equations. Instead, we will generalise them to

manifolds.

Definition 9.3. Let M be a manifold and let X be a vector field on

M . Let (a, b) ⊂ R be an interval, and suppose γ : (a, b) → M is a

smooth map. We say that γ is an integral curve of X if

γ̇(t) = X(γ(t)), ∀ t ∈ (a, b). (9.2)

Last modified: July 17, 2021.
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This definition is consistent with the usual one (9.1) in the special

case where M = O is an open subset of Rm. See Problem D.1. Before

stating the next result, let us introduce a convention.

Definition 9.4. If M is a manifold and (a, b) is an interval then

(a, b) ×M is also a manifold. Given p ∈ M we denote by cp : (a, b) →
(a, b)×M the smooth curve in (a, b)×M defined by

cp(t) := (t, p).

We denote by
∂

∂t

∣∣∣
(t,p)

:= Dcp(t)

(
∂

∂t

∣∣∣
t

)
= ċp(t) (9.3)

the tangent vector in T(t,p)((a, b) ×M) obtained from the canonical

generator ∂
∂t

∣∣
t
∈ TtR. One can think of (t, p) 7→ ∂

∂t

∣∣
(t,p)

as defining a Exercise: Check this.

vector field on (a, b)×M .

Theorem 9.5 (Local flow). Let M be a smooth manifold and let

X ∈ X(M). For any p ∈ M there exists a neighbourhood W of p and

an interval (a, b) with a < 0 < b, together with a smooth map

Φloc : (a, b)×W →M.

such that,

(i) Φloc(0, q) = q, for all q ∈W .

(ii) For all (t, q) ∈ (a, b)×W one has

DΦloc(t, q)

(
∂

∂t

∣∣∣
(t,q)

)
= X(Φloc(t, q)). (9.4)

We call Φloc a local flow of X. We will shortly get rid of the “loc”.

Proof. Let x : U → O be a chart around p with local coordinates (xi).

Let x̃ : π−1(U) → O × Rm denote the corresponding chart on TM .

Then we can write (cf. (8.5))

x̃ ◦X ◦ x−1 = (id, f)

where f : O → Rm is smooth. Theorem 9.1 gives us a neighbourhood Compare this to Problem D.1.

V of x(p), an interval (a, b), and a smooth map h : (a, b) × V → O
such that the two stated conditions hold. To complete the proof, set

W := x−1(V ) and define

Φloc(t, q) := x−1 ◦ h(t, x(q)), (t, q) ∈ (a, b)×W.

That Φloc satisfies the two required conditions is immediate from the

fact that h did.

Remark 9.6. The condition (9.4) is simpler than it looks. Given

q ∈ W , set γq(t) := Φloc(t, q), so that γq : (a, b) → U is a curve in M .

Then by definition

γ̇q(t) = DΦloc(t, q)

(
∂

∂t

∣∣∣
(t,q)

)
,

and so (9.4) asserts that γq is an integral curve of X.
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A similar argument also proves the manifold version of Theorem

9.2:

Theorem 9.7. Let M be a smooth manifold and let X ∈ X(M). If

γ, δ : (a, b)→ M are two integral curves of X with γ(t) = δ(t) for some

t ∈ (a, b) then γ ≡ δ.

Thanks to Theorem 9.7, it makes sense to talk about the maximal

integral curve through a given point.

Definition 9.8. Let X be a vector field on M . Given a point p ∈ M ,

we denote by
(
t−(p), t+(p)

)
the maximal interval around 0 on which

the (unique by Theorem 9.7) integral curve γp :
(
t−(p), t+(p)

)
→ M

of X whose initial condition is γp(0) = p is defined. We call γp the

maximal integral curve through p.

Lemma 9.9. Let X be a vector field on M . Fix p ∈ M and s ∈
(t−(p), t+(p)) and set q := γp(s). Then

t±(γp(s)) = t±(p)− s, ∀ s ∈
(
t−(p), t+(p)

)
. (9.5)

and

γq(t) = γp(t+ s), ∀ t ∈ (t−(q), t+(q)). (9.6)

Proof. This follows from uniqueness. The curve t 7→ γp(t + s) is an

integral curve for X with initial condition q, and hence it is γq. Thus

(9.6) follows, and hence so does (9.5).

We emphasise that
(
t−(p), t+(p)

)
typically will be larger than

the interval (a, b) given by Theorem 9.5 – indeed, by construction

Φloc(t, p) never leaves the open set U that the chart x was defined

on. Thus whilst γp(t) = Φloc(t, p) for small enough t, in general the

curve γp could wander all over the manifold. Here is the global ver-

sion of Theorem 9.5, which extends Φ to all of M so that the equality

γp(t) = Φ(t, p) holds whenever the former is defined.

Theorem 9.10 (Maximal flow). Let M be a smooth manifold and let

X ∈ X(M). There exists a unique open set D(X) ⊂ R ×M and a

unique smooth map Φ: D(X)→M such that

(i) For all p ∈M one has

D(X) ∩
(
R× {p}

)
=
(
t−(p), t+(p)

)
× {p} .

(ii) Φ(t, p) = γp(t) for all (t, p) ∈ D(X).

We call Φ the flow of X. The proof is relegated to the bonus sec-

tion at the end of this lecture, since it is rather fiddly.

We can also reverse the roles of t and p. Given t ∈ R, set

Mt := {p ∈M | (t, p) ∈ D(X)} .

Then Mt is open in M and M =
⋃
t>0Mt. Moreover there is a well-

defined smooth map Φt : Mt →M−t given by

Φt(p) := Φ(t, p), p ∈Mt
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– the fact that Φt takes values in M−t follows from Lemma 9.9. This

map Φt is a diffeomorphism, since Φ−t : M−t →Mt is an inverse. More

generally, if s, t ∈ R then the domain of Φs ◦Φt is contained in (though

not necessarily equal to) Ms+t. If s and t have the same sign then we

have equality. In any case, by Lemma 9.9 again one has Φs ◦Φt = Φs+t

on the domain of Φs ◦ Φt.

Restricting the maps Φt to open subsets of M is annoying. The

next condition rules this out.

Definition 9.11. A vector field X is complete if the set D(X) from

Theorem 9.10 is all of R ×M . Equivalently, a vector field is complete

if either (a) its integral curves exist for all time or (b) the maps Φt :=

Φ(t, ·) are all diffeomorphisms of the entire manifold M .

Definition 9.12. We write Diff(M) for the set of diffeomorphisms

ϕ : M →M . Note that Diff(M) is actually a group under composition,

where the identity element is just the identity map.

Remark 9.13. Assume that M is compact. Then more is true: the

group Diff(M) can itself be given a (Fréchet) manifold structure. We

will say more about this in the bonus section to Lecture 13.

Definition 9.14. A one-parameter group of diffeomorphisms is

a smooth group homomorphism R→ Diff(M). Writing this as t 7→ Φt, Here “smooth” should be inter-

preted as saying that t 7→ Φt is a

smooth map from the manifold R
to the (infinite-dimensional) man-

ifold Diff(M). In more down-to-

earth language, this just means that
(t, p) 7→ Φt(p) is a smooth function

R×M →M .

the group property tells us that

Φ0 = id, Φs+t = Φs ◦ Φt, ∀ s, t ∈ R.

If {Φt} is a one-parameter group of diffeomorphisms then we define

its infinitesimal generator as the (necessarily complete) vector field

X(p) := DΦ(0, p)

(
∂

∂t

∣∣∣
(0,p)

)
, (9.7)

where we wrote Φ(t, p) := Φt(p) and used the convention from (9.3).

Then the flow of X is simply the one-parameter group Φt.

Theorem 9.10 and Lemma 9.9 thus give us:

Proposition 9.15. Let M be a smooth manifold. Then there is a

bijective correspondence between one-parameter subgroups of diffeo-

morphisms and complete vector fields.

Example 9.16. Perhaps the easiest example of a non-complete vector

field is given by taking M = R2 \ 0 and taking X = ∂
∂u1 . If (u1, u2) ∈

R2 \ 0 then the flow line passing through (u1, u2) takes the form:

(u1, u2) 7→ (t + u1, u2). It is then obvious that something must go

wrong if you take (u1, u2) = (−1, 0) and try and flow forwards –

indeed, if the flow existed for all time then at time t = 1 you would Exercise: Make this rigorous.

fall out the manifold through the hole. . .

From now on we will switch between the notations Φ(t, p),

Φt(p) and γp(t) whenever convenient.

Here is an easy way to guarantee completeness.
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Lemma 9.17. Let X be a vector field on M . Assume there exists ε > 0

such that (−ε, ε) ⊂
(
t−(p), t+(p)

)
for all p ∈M . Then X is complete.

Proof. If not, there exists some p ∈ M such that either t+(p) < ∞ or

t−(p) > −∞. Assume the former (the proof in the other case is almost

identical). Choose a number t0 such that t+(p) − ε < t0 < t+(p). Set

p0 := γp(t0). By assumption γp0
(t) is defined for all t ∈ (−ε, ε). Now

consider the curve

γ(t) :=

γp(t), t−(p) < t < t+(p),

γp0
(t− t0), t0 − ε < t < t0 + ε.

These two definitions agree on the overlap, since

γp0
(t− t0) = Φt−t0(p0)

= Φt−t0 ◦ Φt0(p)

= Φt(p)

= γp(t).

This shows that γ is an integral curve for X with initial condition p

which is defined on
(
t−(p), t0 +ε

)
. Since t0 +ε > t+(p), this contradicts

the maximality of t+(p).

We define the support of a vector field X in exactly the same way

as we define the support of a function:

supp(X) := {p ∈M | X(p) 6= 0 ∈ TpM}.

Corollary 9.18. Let X be a vector field with compact support.

Then X is complete.

Proof. By Theorem 9.5 for each p ∈ supp(X) there exists a neighbour-

hood Up of p and an interval (−εp, εp) such that the flow is defined on

(−εp, εp)× Up. Since supp(X) is compact, we may select finitely many

points p1, . . . , pk such that

supp(X) ⊂
k⋃
i=1

Upi .

Now set

ε := min
i=1,...,k

εpi .

Then for every p ∈ supp(X) one has (−ε, ε) ⊂
(
t−(p), t+(p)

)
. Since X

is identically zero on M \ supp(X), every integral curve of X starting

at some point in M \ supp(X) is trivially defined for all t ∈ R. Thus It is the constant curve.

the hypotheses of Lemma 9.17 are satisfied, and the proof is complete.

Corollary 9.19. If M is compact then every vector field on M is

complete.

Proof. If M is compact then certainly every vector field has compact

support.
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We conclude with another variant on Lemma 9.17, which is some-

times more useful.

Lemma 9.20. Let X be a vector field on M . If the maximal domain

of an integral curve γp is not all of R, then the image of that curve

cannot be contained in any compact subset of M .

Proof. Assume for instance that t+(p) < ∞ and that γp is contained

in a compact set K. Choose a sequence tn such that ti → t+(p)

from below. By compactness, γp(ti) converges to some point p0. By

Theorem 9.5, a local flow Φloc of X is defined on (−ε, ε) × U for some

ε > 0 and some neighbourhood U of p0. Choose i large enough so that

γp(ti) ∈ U and ti + ε > t+(p). Then arguing just as in the proof of

Lemma 9.17, the curve

γ(t) :=

γp(t), t−(p) < t < t+(p),

Φloc(t− ti, γp(ti)), ti − ε < t < ti + ε.

is a well-defined integral curve of X starting at p, and thus contradicts

the maximality of t+(p).

Bonus Material for Lecture 9

In this bonus section we prove Theorem 9.1.

Proof of Theorem 9.1. Note that (i) determines D(X) uniquely, and

(ii) does the same for Φ. It remains therefore to show that D(X) is

open and Φ is smooth. This however is somewhat trickier than it

looks.

Fix p ∈ M and let I denote the set of all t ∈
(
t−(p), t+(p)

)
for

which there exists some neighbourhood of (t, p) contained in D(X)

on which Φ is smooth. Since smoothness is an open condition, I is

an open set. We will prove that I is nonempty and closed, whence it

follows that I =
(
t−(p), t+(p)

)
.

Firstly, I is non-empty, since 0 ∈ I by Theorem 9.5. Now suppose

t0 ∈ I. Set p0 := γp(t0). We apply Theorem 9.5 at the point p0 to

obtain a local flow Φloc : (a, b) × U0 → M about p0. Since t0 belongs

to the closure of I, we may choose t1 ∈ I close enough to t0 such that

t0− t1 belongs to (a, b) and such that γp(t1) belongs to U0 (here we are

using the fact that γp is continuous at t0 and that U0 is a neighbour-

hood of p0).

Since (a, b) is an interval, we can do a little better: we can choose

an interval I0 about t0 such that t − t1 ∈ (a, b) for all t ∈ I0. Finally,

by continuity of Φ at (t1, p), there exists a neighbourhood V of p such

that Φ({t1} × V ) ⊂ U0.

We now claim that our original Φ is defined and smooth on all of

I0 × V , so that in particular t0 ∈ I. Indeed, if t ∈ I0 and q ∈ V then

t − t1 ∈ (a, b) and Φ(t1, q) ∈ U0. Thus Φloc(t − t1,Φ(t1, q)) is defined
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and smooth. But the curve s 7→ Φloc(s − t1,Φ(t1, q)) is an integral

curve of X which passes through Φ(t1, q) at t1. By uniqueness, this

curve is Φ(t, q). Therefore

Φ(t, q) = Φloc(t− t1,Φ(t1, q))

is defined and smooth at (t, q).

We have thus shown that for all p ∈M and for all t ∈
(
t−(p), t+(p)

)
,

there exists a neighbourhood of (t, p) in M contained in D(X) on

which Φ is smooth. Thus D(X) is open and Φ: D(X)→ M is smooth.

This completes the proof.
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LECTURE 10

Lie Groups

We now move on to defining the Lie derivative associated to a vector

field X. As with maps ϕ∗ from the last lecture, we will actually give

two definitions, one for the Lie derivative eating a function, and one

for the Lie derivative eating a vector field. In Lecture 22, after we

have discussed tensors (cf. Remark 8.17), we will unify these two

definitions into a single Lie derivative that eats any tensor and spits

out another tensor of the same type.

Definition 10.1. Let X ∈ X(M) with flow Φt. We define the Lie

derivative of X to be the map

LX : C∞(M)→ C∞(M)

given by

(LXf)(p) := lim
t→0

f ◦ Φt(p)− f(p)

t
.

To see that this is well-defined (i.e. why the limit exists and defines

a smooth function), we prove:

Lemma 10.2. LXf = X(f).

Proof. From the definitions one has

X(f)(p) = X(p)(f)

= γ̇p(0)(f)

= (f ◦ γp)′(0).

But then clearly

(f ◦ γp)′(0) = lim
t→0

f ◦ γp(t)− f(p)

t

= lim
t→0

f ◦ Φt(p)− f(p)

t
.

Now we define the Lie derivative on vector fields.

Definition 10.3. Let X ∈ X(M) have flow Φt. We define the Lie

derivative of X to be the map

LX : X(M)→ X(M)

by

(LXY )(p) := lim
t→0

DΦ−t(Φt(p))Y (Φt(p))− Y (p)

t
.

To see that this is well-defined (i.e. why the limit exists and defines

a vector field) we prove:
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Proposition 10.4. For X,Y ∈ X(M) one has LXY = [X,Y ].

Proposition 10.4 also explains the name “Lie derivative”. Before

going any further, let us emphasise once more: the main point of the

Lie derivative is that we will eventually extend this to an operator See Lecture 22.

LX : T (M) → T (M) on the tensor algebra of M . For now though, we

can simply think of the Lie derivative of giving more insight into the

Lie bracket; an example of this is Proposition 10.6 below.

The proof of Proposition 10.4 requires a preliminary lemma, which

can be thought of as a manifold version of Lemma 3.7.

Lemma 10.5. Let U ⊂ M be open and let a < 0 < b. Let f : (a, b) ×
U → R be a smooth function such that f(0, p) = 0 for all p ∈ U . Then

there exists another smooth function h : (a, b)× U → R such that

f(t, p) = th(t, p),
∂

∂t

∣∣∣
(0,p)

(f) = h(0, p), ∀ (t, p) ∈ (a, b)× U.

Proof. Simply define

h(t, p) :=

∫ 1

0

∂

∂t

∣∣∣
(st,p)

(f) ds.

Then h is smooth. To see that f(t, p) = th(t, p) one considers the

curve γ(s) := f(st, p). Then

f(t, p) = f(t, p)− f(0, p)

= γ(1)− γ(0)

=

∫ 1

0

γ′(s) ds.

But by definition

γ′(s) = t
∂

∂t

∣∣∣
(st,p)

(f).

This completes the proof.

We now prove Proposition 10.4.

Proof of Proposition 10.4. Fix p ∈ M . By Theorem 9.5, there exists

a < 0 < b and a neighbourhood U of p such that (a, b) × U ⊂ D(X),

the domain of Φ. Now fix g ∈ C∞(M). We apply Lemma 10.5 to the

function

f(t, y) := g(Φt(y))− g(y)

to obtain a function h, which, writing ht(q) := h(t, q), satisfies:

g ◦ Φt = g + tht, h0 = X(g),

where we used Lemma 10.2. Thus for another vector field Y we have

DΦ−t(Φt(p))Y (Φt(p))(g) = Y (Φt(p))(g ◦ Φ−t)

= Y (Φt(p))(g − th−t)
= Y (g)(Φt(p))− tY (h−t)(Φt(p)).
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We therefore have

(LXY )(g)(p) = lim
t→0

Y (g)(Φt(p))− (Y (g))(p)

t
− lim
t→0

Y (h−t)(Φt(p))

= LX(Y (g)(p)− Y (h0)(p)

= X(Y (g))(p)− Y (X(g))(p)

= [X,Y ](g)(p),

where the second equality used the definition of the Lie derivative LX
applied to the function Y (g) and the third equality used used Lemma

10.2. Since p and g were arbitrary, this completes the proof.

An application of Theorem 10.4 is the following result, whose proof

is deferred to Problem Sheet E.

Proposition 10.6. Let X and Y be vector fields on M with flows

Φt and Ψt respectively. Then [X,Y ] ≡ 0 if and only if the two flows

commute, i.e. Φt ◦Ψs = Ψs ◦ Φt for all s, t small.

We now move onto to our next major topic – Lie groups – which

will take most of the next four lectures. Lie groups are important in

many areas of mathematics (not just geometry!), including represen-

tation theory, harmonic analysis, differential equations and more. Lie

groups also crop up naturally in physics. On the classical side one has

Noether’s theorem, which states that every smooth symmetry of a

physical system has a corresponding conservation law. In high-energy

particle physics, Lie groups are an important ingredient of gauge the-

ory. We will come back to gauge theory in Differential Geometry II

when we study connections on principal bundles.

Definition 10.7. A Lie group G is a smooth manifold that is also a

group in the algebraic sense, with the property that the group multi-

plication

µ : G×G→ G, µ(g, h) = gh,

and group inversion

i : G→ G, i(g) = g−1,

are both smooth maps.

Convention. We typically use the letters G, H for Lie groups. We

also follow the standard group theory notation and use the letters Exception: If G is a matrix Lie

group we use the letters A, B to
denote matrices and denote the

identity matrix by I.

g, h to denote points, and e for the identity element. This has two

important consequences for our notational conventions:

• The dimension of a Lie group is not given by the corresponding

lower-case letter. When necessary, the dimension will always be

explicitly stated.

• When discussing Lie groups, we will never use the letters g, h to

denote functions.

Definition 10.8. A Lie group homomorphism ϕ : G → H is a

smooth map G → H which is also a group homomorphism. A Lie A bijective group homomorphism
is necessarily a group isomorphism;

hence a Lie group isomorphism is in

particular a group isomorphism.

group isomorphism is a Lie group homomorphism which is also a

diffeomorphism.

https://en.wikipedia.org/wiki/Noether%27s_theorem
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Examples 10.9. Here are some examples of Lie groups.

(i) Rm is a Lie group under addition.

(ii) R \ {0} is a Lie group under multiplication.

(iii) The set GL(m) of invertible m × m matrices is a Lie group under

matrix multiplication. Indeed, it is a manifold of dimension m2 (cf.

Problem A.2). Multiplication is smooth because the matrix entries

of a product AB are given by polynomials in the entries of A and

B, and inversion is smooth by Cramer’s rule.

(iv) If G is a Lie group and H ⊂ G is an open subgroup (that is, a

subgroup which is also an open set in G) then H naturally inherits

a Lie group structure (cf. Proposition 1.15). Thus the set GL+(m)

of invertible matrices with positive determinant is a Lie group.

(v) The m-torus Tm = Rm
/
Zm is an abelian Lie group, where the

group structure is induced by addition on Rm. In fact, one can

show that any compact abelian Lie group is (isomorphic to) a torus.

(vi) The same underlying smooth manifold can carry multiple Lie group

structures. For instance, a different Lie group structure on R3 is

given by

µ(u, v) :=
(
u1 + v1, u2 + v2, u3 + v3 + u1v2

)
.

This Lie group is known as the Heisenberg group. In order to see

that this does indeed define a group structure, we identify R3 with

upper triangular 3× 3 matrices:

(u1, u2, u3) ←→

1 u1 u3

0 1 u2

0 0 1


The group multiplication µ corresponds to normal matrix multipli-

cation.

(vii) Not all smooth manifolds can be made into Lie groups. For in-

stance, Sm admits a Lie group structure only for m = 0, 1 and 3.

The reason for this is briefly discussed in Remark 13.15.

Definition 10.10. Let G be a Lie group and let g ∈ G. We define

diffeomorphisms

lg : G→ G, rg : G→ G,

called the left translation by g and the right translation by g

respectively, defined by

lg(h) := gh, rg := (h) = hg.

To see that these maps are diffeomorphisms, note that lg is the

composition of the smooth map h 7→ (g, h) and the group multiplica-

tion µ : G×G→ R. The inverse of lg is lg−1 .
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Remark 10.11. Throughout this lecture we will almost exclusively

work with left translations. This is purely a convention – everything

we do could be reformulated (with appropriate modifications) to work

with right translations instead.

Proposition 10.12. Every Lie group homomorphism has constant

rank.

Proof. Let ϕ : G → H be a Lie group homomorphism. Fix g ∈ G. We

show that ϕ has the same rank at g as it does at e. Since ϕ is a group

homomorphism, the following commutes:

G G

H H

lg

ϕ ϕ

lϕ(g)

Indeed, if we fix h ∈ G then

ϕ(lg(h)) = ϕ(gh) = ϕ(g)ϕ(h) = lϕ(g)(ϕ(h)).

Since h was arbitrary this shows that the diagram commutes. Differen-

tiating the equation ϕ ◦ lg = lϕ(g) ◦ ϕ at e and applying the chain rule

for manifolds (Proposition 4.2) to obtain

Dϕ(g) ◦Dlg(e) = Dlϕ(g)(e) ◦Dϕ(e). (10.1)

Since lg and lϕ(g) are diffeomorphisms, both Dlg(e) and Dlϕ(g) are

linear isomorphisms. The claim follows.

Corollary 10.13. A Lie group homomorphism is a Lie group isomor-

phism if and only if it is bijective.

Proof. This follows immediately from Proposition 10.12 and Problem

C.7.

Definition 10.14. Let G be a Lie group. A Lie subgroup of G

is a subgroup H endowed with a topology and a smooth structure

that simultaneously makes H into a Lie group and into an immersed

submanifold of G.

In fact, embedded submanifolds are automatically Lie subgroups.

Proposition 10.15. Let G be a Lie group, and let H ⊂ G be a sub-

group which is an embedded submanifold. Then H is a Lie subgroup.

Proof. We need to check that H is a Lie group in its own right. Thus

for instance we must show that the group multiplication µ : H ×H →
H is smooth. For this we need the following two facts:

• If M ⊂ N is an immersed submanifold and ϕ : N → L is smooth

then ϕ|M : M → L is also smooth. (Proof : the inclusion map

ı : M → N is smooth by definition of an immersed submanifold, and

ϕ|M = ϕ ◦ ı.)
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• If M ⊂ N is an embedded submanifold and ϕ : L → N is a smooth This property will be formalised in

Definition 15.1.map with ϕ(L) ⊂ M then ϕ : L → M is also smooth. (Proof : This

is immediate from the definition of the subspace topology.)

Going back to the proof, from the first bullet point, µ|H×H : H ×H →
G is smooth. Since H is a subgroup, µ(H × H) ⊂ H. By the second

bullet point, µ|H×H : H × H → H is smooth. A similar argument

applies for inversion.

The following result is much deeper. It is not that difficult to prove,

but it would take the entire lecture (and then some), so we will skip it.

Theorem 10.16 (The Closed Subgroup Theorem). Let G be a Lie

group and suppose H is any subgroup of G. The following are equiva-

lent:

(i) H is a closed subgroup (i.e. H is a closed set in G).

(ii) H is an embedded submanifold of G.

(iii) H is an embedded Lie subgroup of G.

Clearly (iii) implies (ii). Proposition 10.15 proved that (ii) implies

(iii). On Problem Sheet E you are asked to prove that (ii) implies (i).

The trickier bit is to show that (i) implies (ii), and this is what we will

skip.

Definition 10.17. A matrix Lie group is a closed subgroup of

GL(m).

The Closed Subgroup Theorem 10.16 tells us that any matrix Lie

group is a Lie subgroup of GL(m), and hence a Lie group in its own

right. Nevertheless, quoting the Closed Subgroup Theorem is overkill

here, since one can typically reduce the problem to a simple applica-

tion of the Implicit Function Theorem. We illustrate this principle

using the example of the orthogonal group O(m).

Proposition 10.18. The set of orthogonal matrices O(m) is a Lie

subgroup of GL(m) of dimension 1
2m(m− 1).

Proof. By Proposition 10.15 we need only show that O(m) is an

embedded submanifold. For this first consider the set Sym(m) of

symmetric matrices. We can identify Sym(m) ∼= R
m(m+1)

2 , and thus

Sym(m) is naturally a smooth manifold. Now consider the (obviously

smooth) map ϕ : GL(m)→ Sym(m) given by

ϕ(A) := AAT ,

where AT denotes the transpose of A. Then O(m) = ϕ−1(I), where I

is the m ×m identity matrix. Thus by the Implicit Function Theorem

6.10, we need only show that I is regular value of ϕ, whence O(m) is

an embedded submanifold of GL(m) of dimension m2 − 1
2m(m + 1) =

1
2m(m− 1). For A ∈ O(m) one has ϕ ◦ rA = ϕ, and thus

Dϕ(A) ◦DrA(I) = Dϕ(I).
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Since rA is a diffeomorphism, it follows that the rank of ϕ at A is

the same as the rank of ϕ at I. Thus we need only show that ϕ has

maximal rank at I, i.e. that Dϕ(I) is surjective.

Since GL(m) is an open subset of the vector space Mat(m), its

tangent space at I is canonically identified with Mat(m) via the dash-

to-dot map JI , and similarly TI Sym(m) ∼= Sym(m). Thus Dϕ(I)

induces a canonical linear map ` : Mat(m) → Sym(m) such that the

following commutes

Mat(m) Sym(m)

TI Mat(m) TI Sym(m)

`

JI JI

Dϕ(I)

Since JI is an isomorphism, it suffices to show that ` is surjective.

Take A ∈ Mat(m) and compute Sanity check: I+tA belongs to GL(m)
for t small enough, so this expression

makes sense.
Dϕ(I)JI(A) =

d

dt

∣∣∣
t=0

ϕ(I + tA)

=
d

dt

∣∣∣
t=0

(
I + t(A+AT ) + t2AAT

)
= JI(A+AT )

Thus ` is the map A 7→ A + AT . This map is surjective, since if

S ∈ Sym(m) then `( 1
2S) = S. This completes the proof.

This technique works for all matrix Lie groups – the only trick is to

find the right map ϕ. On Problem Sheet E you are asked to carry this

out for the symplectic linear group.



Will J. Merry

LECTURE 11

The Lie Algebra of a Lie Group

Today we make the connection between Lie groups and Lie alge-

bras. We begin by explaining how to produce a Lie algebra from a

Lie group. The converse – producing a Lie group from a Lie algebra

– is harder. This is the content of the famous Lie Correspondence

Theorem, stated as Theorem 11.11 below. The proof of the Lie Corre-

spondence Theorem will be given in Lecture 14.

Definition 11.1. Let G be a Lie group. We define the Lie algebra

of G, written as g, as the tangent space to G at the identity element e:

g := TeG.

Of course, for this definition not to be completely insane, the Lie al-

gebra of a Lie group better be a Lie algebra in the sense of Definition

8.11. Luckily this is indeed the case, as we will prove in Corollary 11.6

below.

Convention. The standard convention is that the Lie algebra of a

given Lie group is written with the corresponding lower case Frak-

tur letter. This convention will be used throughout, often without

comment. Thus for instance if H is a Lie group, the symbol h should

always be understood to denote TeH, even if this is not explicitly

stated. A similar convention applies for matrix Lie groups: we write

gl(m) for the Lie algebra of GL(m), o(m) for the Lie algebra of O(m),

and so on.

Examples 11.2. Here are some examples of Lie algebras of Lie

groups.

(i) The Lie algebra of GL(m) is gl(m) ∼= Mat(m).

(ii) The Lie algebra of O(m) is

o(m) :=
{
A ∈ gl(m) | A+AT = 0

}
.

This follows from Proposition 10.18 together with Proposition 6.15.

(iii) The Lie algebra of Tm is Rm. Indeed, for m = 1 this is clear, and

for m > 1 this follows from Problem C.1. More generally, the Lie

algebra of any abelian Lie group is an abelian Lie algebra (and the

converse holds if the Lie group is connected), as you will prove on

Problem Sheets E and G.

The key to proving that the Lie algebra of a Lie group is indeed a

Lie algebra is the following concept.

Definition 11.3. Let G be a Lie group. A vector field X ∈ X(G) is

said to be left-invariant if (lg)∗X = X for all g ∈ G. Equivalently,

this means that

Dlg(h)X(h) = X(gh), ∀ g, h ∈ G.
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We denote by Xl(G) ⊂ X(G) the set of left-invariant vector fields.

It is immediate that Xl(G) is a linear subspace of X(G). In fact,

much more is true: the Lie bracket of two left-invariant vector fields is

again left-invariant:

Proposition 11.4. Let G be a Lie group and let X,Y ∈ Xl(G). Then

[X,Y ] also belongs to Xl(G). Consequently Xl(G) is a Lie subalgebra

of X(G).

Proof. Fix g ∈ G. Then by Proposition 8.19 one has

(lg)∗[X,Y ] = [(lg)∗X, (lg)∗Y ] = [X,Y ].

Since g was arbitrary, the result follows.

The next result is the main step needed to show that g is a Lie

algebra.

Theorem 11.5. Let G be a Lie group with Lie algebra g. The evalua-

tion map

evale : Xl(G)→ g, evale(X) := X(e)

is a vector space isomorphism. Thus Xl(G) is a vector space of the

same dimension as G.

Proof. The map evale is clearly linear. If evale(X) = 0 then X is

identically zero, since for any g ∈ G one has by left-invariance:

X(g) = Dlg(e)X(e) = 0.

Thus we need only show that evale is surjective. For this, fix an arbi-

trary ξ ∈ g = TeG. We define a map Xξ : G→ TG by

Xξ(g) := Dlg(e)ξ.

Then Xξ certainly satisfies the section property (8.1), since Dlg(e) is a

map TeG → TgG. To show that Xξ is a vector field, it suffices to show

that Xξ(f) is smooth for any f ∈ C∞(G). Fix such an f , and choose a

smooth curve γ : (−ε, ε) → G such that γ(0) = e and γ̇(0) = ξ. Define

a smooth map

δ : (−ε, ε)×G→ R, δ(t, g) := f
(
µ(g, γ(t))

)
,

where µ : G×G→ G is the group multiplication. Write δg := δ(·, g); we Thus δg = f ◦ lg ◦ γ.

think of δg as a family of smooth curves in R which depend smoothly

on g. Following through the definitions, for any g ∈ G one has

Xξ(f)(g) = Xξ(g)(f)

=
(
Dlg(e)ξ

)
(f)

= ξ(f ◦ lg)
= γ̇(0)(f ◦ lg)
= δ̇g(0).
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Since g 7→ δ̇g(0) is smooth, this shows that Xξ(f) is smooth. Since f

was arbitrary, it follows from Proposition 8.2 that Xξ is smooth, and

hence a vector field. Next, we claim Xξ is left-invariant. Indeed, if

g, h ∈ G then

Dlg(h)Xξ(h) = Dlg(h) ◦Dlh(e)ξ

= D(lg ◦ lh)(e)ξ

= Dlgh(e)ξ

= Xξ(gh).

Thus Xξ ∈ Xl(G). Since evale(Xξ) = Xξ(e) = ξ, this shows evale is

surjective. The proof is complete.

Corollary 11.6. Let G be a Lie group of dimension m. Then its Lie

algebra is a Lie algebra (!) of dimension m.

Proof. We need only define a Lie bracket on g. For this, using the

notation from Theorem 11.5, we define

[ξ, ζ] := evale
(
[Xξ, Xζ ]

)
, ξ, ζ ∈ g.

This works by Theorem 11.5 and Proposition 11.4.

For the next result, let us recall from Problem D.6 that if ϕ : M →
N is a smooth map between manifolds, and X ∈ X(M) and Y ∈ X(N)

then we say that X and Y are ϕ-related if

Dϕ(p)X(p) = Y (ϕ(p)), ∀ p ∈M.

Proposition 11.7. Let ϕ : G → H be a Lie group homomorphism

between two Lie groups. Then Dϕ(e) : g → h is a Lie algebra homo-

morphism.

Proof. Let ξ ∈ g and let Xξ ∈ Xl(G) denote the unique left-invariant

vector field such that Xξ(e) = ξ. Let ζ := Dϕ(e)ξ and let Yζ ∈ Xl(H)

denote the unique left-invariant vector field such that Yζ(e) = ζ. We

claim that Xξ and Yζ are ϕ-related. Indeed, by (10.1) one has

Dϕ(g)Xξ(g) = Dϕ(g) ◦Dlg(e)ξ
= Dlϕ(g)(e) ◦Dϕ(e)ξ

= Dlϕ(g)(e)ζ

= Yζ(ϕ(g)).

Now by part (ii) of Problem D.6, if ξ1, ξ2 ∈ g and ζi := Dϕ(e)ξi then

[Xξ1 , Xξ2 ] is ϕ-related to [Yζ1 , Yζ2 ]. Evaluating both sides at e gives

Dϕ(e)[ξ1, ξ2] = [ζ1, ζ2].

This completes the proof.

Suppose now H is a Lie subgroup of G. Let ı : H ↪→ G denote the

inclusion. Then since Dı(e) : h = TeH → g = TeG is injective, we

can regard h as a linear subspace of g. A priori however, this identifi-

cation might not respect the Lie brackets. Thanks to Proposition 11.7,

however, it does:
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Corollary 11.8. Let H ⊂ G be a Lie subgroup, and identify h with

its image in g. The Lie bracket on h is simply the restriction of the Lie

bracket on g to h. Thus h is a Lie subalgebra of g.

Proof. Apply Proposition 11.7 with ϕ the inclusion (note that the

roles of H and G have been reversed!)

Let us go back to GL(m). We now have potentially two different

Lie brackets on gl(m) ∼= Mat(m): the one coming from Corollary 11.6,

and the commutator bracket (cf. part (ii) of Example 8.12). The next

result, whose proof is deferred to Problem Sheet E, tells us that these

coincide.

Proposition 11.9. The Lie bracket on gl(m) is given by matrix

commutation, i.e.

[A,B] = AB −BA, ∀A,B ∈ gl(m).

Combining Corollary 11.8 and Proposition 11.9, we end up with:

Corollary 11.10. Let G be a matrix Lie group. Then the Lie

bracket on g is given by matrix commutation.

The Lie group-Lie algebra correspondence established in Corollary

11.8 goes both ways. This is the content of the next famous result.

The proof will be given in Lecture 13 after we have proved the Frobe-

nius Theorem.

Theorem 11.11 (The Lie Correspondence Theorem). Let G be a Lie

group with Lie algebra g. If h is a Lie subalgebra of g then there is a

unique connected Lie subgroup H of G whose Lie algebra is h.

We conclude this lecture by defining a special type of Lie subgroup.

Definition 11.12. Let G be a Lie group. A one-parameter sub- Here R is thought of as a Lie group

under addition.group of G is a Lie group homomorphism R→ G.

It turns out that one-parameter subgroups are easy to classify. The The relation between Definition 9.14

and Definition 11.12 will be explored
in Lecture 13.

starting point for this classification is the following statement.

Proposition 11.13. Let G be a Lie group and let X ∈ Xl(G). Then

X is complete.

Proof. We will show that there exists ε > 0 such that for all g ∈ G

the integral curve γg of X with initial condition is defined on at least

(−ε, ε). This implies the result, by Lemma 9.17.

Choose ε > 0 such that the integral curve γe is defined on (−ε, ε).
Fix g ∈ G and let δ := lg ◦ γe. Then δ(0) = g, and moreover

δ̇(t) =
d

ds

∣∣∣
s=t

lg(γe(s))

= Dlg(γe(t))γ̇e(t)

= Dlg(γe(t))X(γe(t))

= X(gγe(t))

= X(δ(t)),
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where the penultimate line used left-invariance. By uniqueness of

integral curves (Theorem 9.7), it follows that δ ≡ γg where defined.

Thus γg is defined on (at least) (−ε, ε). The result follows.

Notation. For ξ ∈ g we denote by γξ : R → G the integral curve of

the left-invariant vector field Xξ with initial condition γξ(0) = e.

Proposition 11.14. Let G be a Lie group with Lie algebra g. Then

each curve γξ : R → G is a one-parameter subgroup. Moreover any

one-parameter subgroup is of this form.

Proof. Fix ξ ∈ g. To show that γξ is a one-parameter subgroup we

must show that

γξ(s+ t) = γξ(s)γξ(t)

for all s, t ∈ R, where on the right-hand side we use multiplication in

G. For this, fix s ∈ R and consider the curve

δ(t) := γξ(s)−1γξ(s+ t).

Then δ(0) = e, and by the chain rule

δ̇(t) = Dlγξ(s)−1(γξ(s+ t))γ̇ξ(s+ t)

= Dlγξ(s)−1(γξ(s+ t))Xξ(γ
ξ(s+ t))

= Xξ

(
γξ(s)−1γξ(s+ t)

)
= Xξ(δ(t)).

where the penultimate line used left-invariance again. Thus by unique-

ness of integral curves, one must have δ(t) = γξ(t).

Conversely, suppose γ is a one-parameter subgroup. Let ξ := γ̇(0) ∈
g. We claim that γ̇(t) = Xξ(γ(t)). Since γ(t + s) = γ(t)γ(s) =

lγ(t)(γ(s)), we have

γ̇(t) =
d

ds

∣∣∣
s=0

γ(t+ s)

=
d

ds

∣∣∣
s=0

lγ(t)(γ(s))

= Dlγ(t)(γ(0))γ̇(0)

= Dlγ(t)(e)ξ

= Xξ(γ(t)).

where the last line used the definition of Xξ. Thus again by unique-

ness of integral curves we have γ ≡ γξ. This completes the proof.

We can play a similar game by replacing ξ ∈ g with a scalar multi-

ple sξ.

Lemma 11.15. For any s, t ∈ R one has

γξ(st) = γsξ(t).

Proof. First note as Dlg(e) is a linear map one has for any g ∈ G that

Xsξ(g) = Dlg(e)(sξ) = sDlg(e)ξ = sXξ(g).
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Thus Xsξ = sXξ. Now by the chain rule

d

dt

∣∣∣
t=t0

γξ(st) = sγ̇ξ(st0) = sXξ(γ
ξ(st0)) = Xsξ(γ

ξ(st0)).

Thus t 7→ γξ(st) is an integral curve of Xsξ with initial condition

e, and hence by uniqueness of integral curves once more, one has

γξ(st) ≡ γsξ(t).



Will J. Merry

LECTURE 12

Smooth Actions of Lie Groups

We begin this lecture by introducing the exponential map of a Lie

group G, which will be a smooth map exp: g → G. The reason for the

name will become apparent in Proposition 12.7 – namely, the expo-

nential map of a matrix Lie group is given by matrix exponentiation.

As in the previous lecture, given ξ ∈ g, we denote by γξ : R → G the

integral curve of Xξ with initial condition γξ(0) = e.

Definition 12.1. Let G be a Lie group with Lie algebra g. The ex-

ponential map is the map

exp: g→ G, ξ 7→ γξ(1).

The following result is an immediate corollary of Proposition 11.14,

Lemma 11.15, and Problem E.2.

Proposition 12.2 (Properties of the exponential map). The exponen-

tial map exp: g→ G satisfies:

(i) exp((s+ t)ξ) = exp(sξ) exp(tξ) for all ξ ∈ g and s, t ∈ R,

(ii) exp(−tξ) = (exp(tξ))−1 for all ξ ∈ g and t ∈ R,

(iii) The map t 7→ exp(tξ) is precisely the one-parameter subgroup γξ(t).

(iv) The flow Φξt of Xξ is given by Φξt = rexp(tξ).

We now prove that the exponential map is smooth, and compute its

derivative at the origin.

Theorem 12.3. The exponential map exp: g → G is smooth. More-

over the following commutes: This is often imprecisely stated as
D exp(0) = id.

g g

T0g

id

J0 D exp(0)

Proof. We prove the result in three steps.

1. The space G × g is a smooth manifold by Problem A.3. We

define a map X̂ : G× g→ T (G× g) by

X̂(g, ξ) :=
(
Xξ(g), 0

)
∈ TgG× Tξg ∼= T(g,ξ)(G× g),

where the last isomorphism used Problem C.1. We claim that X̂ is a

vector field on G × g. It clearly satisfies the section property (8.1),

and thus we need only check that X̂ is smooth. For this, suppose

f ∈ C∞(G × g) is smooth. Given ξ ∈ g, let fξ := f(·, ξ) : G → R, so

that fξ is a smooth function on G. Then by definition

X̂(f)(g, ξ) = Xξ(fξ)(g).
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The vector field Xξ depends linearly on ξ by Theorem 11.5. Since

linear functions are always smooth, ξ 7→ Xξ is also smooth in ξ.

The function fξ depends smoothly on ξ as f is smooth as a function

of both g and ξ. Thus the expression (g, ξ) 7→ Xξ(fξ)(g) depends

smoothly on both g and ξ. Thus by Proposition 8.2, X̂ is indeed a

vector field. Thus the flow Φ̂ of X̂ is also smooth.

2. In this step we compute the flow Φ̂t of X̂. Fix (g, ξ) ∈ G × g.

Define γ : R→ G× g by

γ(t) :=
(
g exp(tξ), ξ

)
= (lg(γ

ξ(t)), ξ)

Then γ(0) = (g, ξ) and

γ̇(t) =
(
Dlg(γ

ξ(t))γ̇ξ(t), 0
)

=
(
Dlg(γ

ξ(t))Xξ(γ
ξ(t)), 0

)
=
(
Xξ(gγ

ξ(t)), 0
)

= X̂(γ(t)).

Thus γ is an integral curve of X̂. By uniqueness of integral curves, it

follows that X̂ is complete and its flow is given by

Φ̂t(g, ξ) :=
(
g exp(tξ), ξ

)
.

In particular, Φ̂1(e, ·) : g → G × g is smooth. This is the map ξ 7→
(exp(ξ), ξ). Thus exp is smooth.

3. In this last step we compute D exp(0). Take ξ ∈ g. Then

D exp(0)J0(ξ) =
d

dt

∣∣∣
t=0

exp(tξ)

=
d

dt

∣∣∣
t=0

γξ(t)

= ξ.

This completes the proof.

Corollary 12.4. The exponential map is a diffeomorphism of some

neighbourhood of the origin in g onto its image in G.

Proof. Since exp has maximal rank at 0 by Theorem 12.3, this follows

immediately from the Inverse Function Theorem 5.10.

Now let us investigate how the exponential map behaves with re-

spect to Lie group homomorphisms.

Proposition 12.5. Let G and H be Lie groups with Lie algebras

g and h. Let ϕ : G → H be a Lie group homomorphism. Then the

following diagram commutes:

g h

G H

Dϕ(e)

exp exp

ϕ
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Proof. If γ : R → G is a homomorphism then since ϕ is a homo-

morphism so is ϕ ◦ γ : R → H. Applying this with γ(t) = exp(tξ)

shows that t 7→ ϕ(exp(tξ)) is a one-parameter subgroup of H. Set

δ(t) := ϕ(γ(t)). Then

δ̇(0) =
d

dt

∣∣∣
t=0

ϕ(exp(tξ))

= Dϕ(e) ◦D exp(0)J0(ξ)

= Dϕ(e)ξ,

where we used the chain rule and Theorem 12.3. Thus by uniqueness

of integral curves it follows that

ϕ(exp(tξ)) = exp(tDϕ(e)ξ),

which is what we wanted to prove.

Applying Proposition 12.5 to an inclusion of a subgroup, as in

Corollary 11.8 tells us:

Corollary 12.6. Let G be a Lie group with Lie algebra g and H ⊂
G a Lie subgroup with Lie subalgebra h ⊂ g. Then the exponential

map exp: h→ H is the restriction of exp: g→ G to h.

The next result identifies the exponential map for G = GL(m).

Proposition 12.7. Let A ∈ gl(m). Then the matrix exponential

eA :=

∞∑
k=0

1

k!
Ak

converges and defines an element of GL(m). Moreover A 7→ eA is the

exponential map of GL(m).

The proof is deferred to Problem Sheet F. As with Corollary 11.10,

this also allows us to characterise the matrix exponential for matrix

Lie groups.

Corollary 12.8. Let G be a matrix Lie group with Lie algebra g.

Then the exponential map exp: g → G is given by matrix exponentia-

tion: exp(A) = eA.

Proof. Apply Corollary 12.6 and Proposition 12.7.

This concludes our introductory treatment of Lie groups.

We now explore the manifold version of another key algebraic idea.

If you think back to your introductory course on group theory, you

will no doubt remember that one of the most important reasons to

study groups is because we can let them act on sets. In fact, the no-

tion of a group acting on a set is arguably more fundamental than

that of a group itself, and certainly historically, the idea of a “transfor-

mation group” (i.e. an action of a group on a given set) predates that

of an abstract group. One might even go so far as to say that groups

are interesting precisely because of their actions.
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Lie groups are no exception. Since we are working in the smooth

category, we restrict our attention to smooth actions of Lie groups on

manifolds.

Definition 12.9. Let G be a Lie group and let M be a manifold. A

smooth map σ : G×M →M satisfying Here as usual σg := σ(g, ·).

σgh = σg ◦ σh σe = id, (12.1)

for all g, h ∈ G is called a smooth left action of G on M . For fixed

g ∈ G, this implies that p 7→ σ(g, p) is a diffeomorphism of M , which

we denote by σg.

If one replaces (12.1) with

σgh = σh ◦ σg σe = id,

one arrives at a smooth right action of G on M .

Remark 12.10. The difference between right actions and left actions

is purely notational, since we can always convert one into the other.

Indeed, if σ is a left action then we can define a right action σ̃ by

setting σ̃g := σg−1 , and conversely.

In the definitions that follow, by a smooth action we mean

either a smooth left action or a smooth right action.

As you no doubt remember from algebra, there are various different

types of group actions one can study. We define the fixed point set

of σg as

fix(σg) := {p ∈M | σg(p) = p} .

and the orbit of p as

orbσ(p) := {σg(p) | g ∈ G} .

Finally the stabiliser of p is the set

stabσ(p) := {g ∈ G | p ∈ fix(σg)} .

Definitions 12.11. Let σ : G ×M → M be a smooth action of G on

M .

(i) We say that σ is an effective action if

σg = id ⇒ g = e.

(ii) We say that σ is a free action if Thus free ⇒ effective.

fix(σg) 6= ∅ ⇒ g = e.

(iii) The action σ is said to be transitive if

orbσ(p) = M, ∀ p ∈M.
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(iv) The action σ is said to be proper if the map

(σ, id) : G×M →M ×M (g, p) 7→ (σg(p), p)

is a proper map in the topological sense. i.e. the preimage of a compact set is
compact.

An alternative characterisation of proper actions is the following

statement, whose proof is left for you on Problem Sheet F.

Lemma 12.12. Let σ be a smooth action of G on M . Then σ is proper

if and only if for every pair of points p, q ∈ M and every sequence

pk → p, if (gk) is a sequence in G such that σgk(pk) → q then (gk)

admits a convergent subsequence. Moreover if gk → g then σg(p) = q.

Examples 12.13. Here are some examples of smooth actions.

(i) Let G be a Lie group. We can think of G acting on itself via both

left and right translations (which are left and right actions respec-

tively). These actions – denoted by l and r – are obviously both

free and transitive. In fact, they are also proper, as you will prove

on Problem Sheet F.

(ii) A Lie group can also act on itself via conjugation. Define

cg(h) := ghg−1,

so that cg = lg ◦rg−1 = rg−1 ◦ lg. This left action is not proper unless

G is compact. It is also never free or transitive (unless G = {e}). If

G is commutative it also fails to be effective.

(iii) A smooth left action σ of a Lie group G on a vector space V is In fact, if σ is continuous then σ is

automatically smooth – this can be
proved using Problem F.10.

called a representation of G on V if σg is a linear map for each

g ∈ G. Thus one can think of g 7→ σg as Lie group homomorphism

G → GL(V ). The study of such actions is called Representation

Theory, and is a major field of mathematics in itself. In the context

of representation theory, an effective representation is usually called

a faithful representation.

(iv) As a special case of the preceding example, if we take G = GL(V )

and σ = id, we obtain the canonical representation of GL(V ) on

V .

(v) The canonical representation of GL(m) on Rm restricts to define a Exercise: Prove this.

transitive left action of O(m) on Sm−1.

It will be useful in Lecture 16 when discussing fibre bundles to

know that we can always convert an action into an effective action.

Proposition 12.14. Let σ be an action of a Lie group G on M . Let

H := {g ∈ G | σg = id} .

Then H is a normal subgroup of G. If K := G/H then σ induces an

action σ̄ of K on M such that

{σg | g ∈ G} = {σ̄k | k ∈ K} , (12.2)

where both sides are thought of as subgroups of Diff(M).
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Proof. Suppose h ∈ H and g ∈ G. Then

σghg−1 = σg ◦ σh ◦ σg−1

= σg ◦ id ◦σg−1

= id .

Thus H is normal and the quotient group K := G/H is well defined.

We identify an element k ∈ K with the coset kH ⊂ G. We define

σ̄k := σg,

where g is any element of kH. This is well-defined, since if g1 is an-

other element of kH then g1g
−1 ∈ H and hence

σg1
= σg1g−1g = σg1g−1 ◦ σg = σg.

The action σ̄ is obviously effective, and (12.2) holds by definition.

It is also convenient to regard p ∈ M as fixed and consider the map

σ(·, p). We denote this map by σp and call it an orbit map:

σp : G→M, σp(g) := σ(g, p). (12.3)

Thus by definition

imσp = orbσ(p).

Immediately from the definition we obtain:

Lemma 12.15. Let σ by a smooth action of G on M . Then

(i) The action is free if and only if σp is injective for all p ∈M .

(ii) The action is transitive if and only if σp is surjective for all p ∈M .

Definition 12.16. Suppose σ : G ×M → M and τ : G × N → N are

two smooth actions of the same Lie group G. A smooth map ϕ : M →
N is said to be (σ, τ)-equivariant if the following commutes for all

g ∈ G:

M N

M N

ϕ

σg τg

ϕ

If the actions σ and τ are clear from the context, we simply say that ϕ

is equivariant.

Examples 12.17. Here are two examples of equivariant maps.

(i) Let G and H be Lie groups and ϕ : G → H a Lie group homomor-

phism. Define a left action σ of G on H by

σg(h) := ϕ(g)h.

Then ϕ is (l, σ) equivariant, where l is the action of G on itself by

left translations.
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(ii) Let σ be a smooth left action of G on M . Then for every point

p ∈ M , the orbit map σp : G → M is (l, σ)-equivariant, where

l is the action of G on itself by left translations. If instead σ is a

smooth right action on M , then σp is (r, σ)-equivariant.

The next result is analogous to Proposition 10.12.

Proposition 12.18. Suppose σ : G ×M → M and τ : G × N → N

are two smooth actions such that σ is transitive. Then any (σ, τ)-

equivariant smooth map ϕ : M → N has constant rank.

Proof. Fix p, q ∈ M . We show that the rank of ϕ at p is the same as

the rank of ϕ at q. Since σ is transitive, there exists g ∈ G such that

σg(p) = q. We differentiate the equality ϕ ◦ σg = τg ◦ ϕ at p to obtain

Dϕ(q) ◦Dσg(p) = Dτg(ϕ(p)) ◦Dϕ(p).

Since σg and τg are both diffeomorphisms, Dσg(p) and Dτg(ϕ(p)) are

linear isomorphisms. The result follows.

Corollary 12.19. Let σ by a smooth action of G on M . Fix p ∈M .

(i) If σp is injective then σp is an immersion, and thus orbσ(p) is an

immersed submanifold.

(ii) If σp is surjective then σp is a submersion, and thus σp is a quotient

map which admits smooth local sections.

Proof. By part (ii) of Examples 12.17 the orbit maps σp are equiv-

ariant, and hence by Proposition 12.18 they have constant rank. The The last sentence of (ii) uses Proposi-

tion 6.13.result follows from Problem C.7.



Will J. Merry

LECTURE 13

Homogeneous Spaces

In this lecture we state the Quotient Manifold Theorem, which tells us

that the quotient space of a proper free action is naturally a smooth

manifold. We use this to define homogeneous spaces. Finally we

investigate the adjoint representation of a Lie group.

Proposition 13.1. Let σ be a proper action of G on M . Then for

every p ∈M , the orbit orbσ(p) is an embedded submanifold.

Proof. The orbit map σp is (l, σ)-equivariant (cf. part (ii) of Examples

12.17), and hence by Proposition 12.18 has constant rank, say n. By

Corollary 6.19 there exists a neighbourhood U of e ∈ G and an open When the action is free – which is

the main case of interest – one does

not need to quote the (unproven)
Corollary 6.19, and can instead use

Corollary 12.19.

set O ⊂ Rn, together with an immersion ψ : O → G such that σp ◦
ψ : O →M is an embedding with

σp(ψ(O)) = σp(U). (13.1)

Since σp ◦ ψ is an embedding there exists by Proposition 6.3 a slice

chart (W, y) about p such that

σp(ψ(O)) ∩W =
{
q ∈W | yn+1(q) = · · · = ym(q) = 0

}
,

and hence by (13.1) we have

σp(U) ∩W =
{
q ∈W | yn+1(q) = · · · = ym(q) = 0

}
. (13.2)

We now claim there exists an open set V ⊂W containing p such that

orbσ(p) ∩ V = σp(U) ∩ V. (13.3)

One always has ⊇ in (13.3), so if no such neighbourhood V exists this

means we can find a sequence (pk) ∈ orbσ(p) such that pk → p and

pk /∈ σp(U). Let gk ∈ G be such that σgk(p) = pk. Then by Lemma

12.12, up to passing to a subsequence one has gk → g for some g ∈ G,

and moreover σg(p) = p. Since rg(U) is a neighbourhood of g in G, we

must have gk ∈ rg(U) for all k large. Thus

pk = σgk(p) ∈ σp(rg(U))

for all large k. But by equivariance and the definition of an orbit

σp(rg(U)) = σσg(p)(U) = σp(U).

This contradicts the claim that pk /∈ σp(U) for all k, and hence (13.3)

is proved. Combining (13.2) and (13.3) tells us that

orbσ(p) ∩ V =
{
q ∈ V | yn+1(q) = · · · = ym(q) = 0

}
.

This shows that orbσ(p) is embedded in a neighbourhood of p. How-

ever the same argument also works for an arbitrary point p0 ∈ orbσ(p),

since orbσ(p0) = orbσ(p) by definition. Thus we have produced slice

charts at every point of orbσ(p), and thus the result follows from

Proposition 6.7.
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The hypotheses of Proposition 13.1 do not imply that the orbit

orbσ(p) is diffeomorphic to G – for instance, consider the trivial action

σg ≡ id. If however we additionally assume the action is free, then the

orbits are all diffeomorphic to G.

Corollary 13.2. Let σ be a free and proper action of G on M . Then

for every point p ∈M the orbit map σp : G→M is an embedding, and

thus dim orbσ(p) = dimG.

Proof. Since orbσ(p) is embedded, the orbit map is smooth as a map

G → orbσ(p) (cf. the second bullet point in the proof of Proposition

10.15). The map σp : G → orbσ(p) is always surjective, and if the

action is free, it is also injective by part (i) of Lemma 12.15. Thus σp

is a bijective smooth map of constant rank, and hence by Problem C.7

it is a diffeomorphism.

The stabilisers are also always embedded Lie subgroups of G.

Proposition 13.3. Let σ be a smooth action of G on M . Then for

every p ∈M the set stabσ(p) is an embedded Lie subgroup of G.

Proof. It is clear stabσ(p) is a closed subgroup. The claim now follows

from the Closed Subgroup Theorem 10.16.

We now move onto the Quotient Manifold Theorem.

Definition 13.4. Let σ be a smooth action of G on M . Define an

equivalence relation on M by saying that p ∼ q if and only if orbσ(p) =

orbσ(q). Denote the quotient space by M/G and let ρ : M → M/G This notation is somewhat imprecise,
since the space depends on the choice

of action σ. Where necessary we write

M/σG to indicate this dependence.

denote the projection. We call M/G the quotient space of M by the

G action.

We endow M/G with the quotient topology. In general this topol-

ogy can be very badly behaved, but if the action is proper then it is at

least Hausdorff.

Lemma 13.5. Suppose σ is a proper smooth action of G on M . Then

the quotient space M/G is Hausdorff.

Proof. The quotient map ρ is an open map for the quotient topology,

as if U ⊂M is open then

ρ−1(ρ(U)) =
⋃
g∈G

σg(U)

is open in G. Since (σ, id) : G ×M → M ×M is proper, its image –

call it C – is a closed subset of M ×M . Now suppose p, q ∈ M are

such that ρ(p) 6= ρ(q). This means that (p, q) 6∈ C. Since C is closed,

there exist neighbourhoods U and V of p and q respectively such that

(U × V ) ∩ C = ∅. Then ρ(U) and ρ(V ) are open neighbourhoods

of ρ(p) and ρ(q) in M/G such that ρ(U) ∩ ρ(V ) = ∅. Thus M/G is

Hausdorff.

In fact, more is true. We conclude this lecture with the following

theorem.
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Theorem 13.6 (The Quotient Manifold Theorem). Let σ be a smooth

action of G on M which is both proper and free. Then the quotient

space M/G admits the structure of a topological manifold of dimen-

sion dimM − dimG. Moreover there exists a unique smooth structure

on M/G such that the quotient map ρ : M → M/G is a smooth sub-

mersion.

Just as with Theorem 11.11, the proof of Theorem 13.6 requires the

Frobenius Theorem, and hence the proof is deferred until Lecture 14.

Corollary 13.7. Let H be a closed subgroup of G. Then the space Recall by the Closed Subgroup Theo-

rem 10.16 this is equivalent to asking
that H be an embedded Lie subgroup

of G.

G/H of left cosets of H in G admits the structure of a topological

manifold of dimension dimG − dimH. Moreover there exists a unique

smooth structure on G/H such that the quotient map ρ : G → G/H is

a smooth submersion.

Proof. By Problem F.5 the right action r : H × G → G is both free

and proper. The statement now follows from the Quotient Manifold

Theorem.

Corollary 13.7 does not assert that G/H is a Lie group. Indeed,

G/H is not even a group! If H is a normal subgroup however then

G/H is a group, and in fact in this case:

Proposition 13.8. Let G be a Lie group and let H be a closed nor-

mal subgroup. Then the smooth manifold G/H with its natural group

structure is a Lie group.

Proof. The map ρ : G → G/H is given by ρ(g) = gH (the coset). The

multiplication on G/H is given by This is only well-defined when H is

normal.

µ̄(g1H, g2H) := g1g2H.

To check this is smooth, fix g1, g2 ∈ G and let ψ1 and ψ2 be smooth These exist by Proposition 6.13.

local sections of ρ near g1H and g2H respectively. Then near the point

(g1H, g2H) ∈ G/H ×G/H, one has

µ̄ = ρ ◦ µ ◦ (ψ1, ψ2),

where µ : G×G→ G is the multiplication on G. Thus near (g1H, g2H),

µ̄ is the composition of smooth maps, and hence is smooth. Since g1H

and g2H were arbitrary, µ̄ is smooth everywhere. A similar argument

works for the inversion map.

Definition 13.9. A homogeneous space is a smooth manifold

M which is diffeomorphic to a smooth manifold of the form G/H,

where G is a Lie group, H is a closed subgroup, and G/H is given the

smooth structure from Corollary 13.7.

Many manifolds are homogeneous spaces (we will shortly see some

examples). The key tool used to prove a given manifold is a homoge-

neous space is Theorem 13.12 below, which needs a few preliminary

definitions.
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Definition 13.10. Let σ be a smooth action of G on M . A point

p ∈M is called a stationary point of σ if

p ∈
⋂
g∈G

fix(σg), that is, stabσ(p) = G.

Proposition 13.11. Let σ be a smooth left action of G on M . As-

sume that p is a stationary point of σ. Then the map

τ : G→ GL(TpM), τ(g) := Dσg(p)

is a Lie group homomorphism (i.e. a representation).

Proof. Let us first check τ is a homomorphism. For this, observe

τ(gh) = Dσgh(p) = D(σg ◦ σh)(p) = τ(g)τ(h).

The smoothness issue is a little more delicate. At first glance, it would

appear obvious – σ is smooth, and hence so is Dσ. But herein lies the

problem: GL(TpM) ∼= GL(m) has its own topology, and a priori it is

not clear how smoothness of σ helps.

By definition of the topology on GL(TpM) ∼= GL(m), it suffices to

show that for a fixed ξ ∈ TpM the map

g 7→ Dσg(p)ξ (13.4)

is smooth as a map G → TpM . Since TpM is an embedded sub- The projection map π : TM → M is

a smooth submersion (Theorem 5.6).

Thus TpM = π−1(p) is an embedded
submanifold by the Implicit Function

Theorem 6.10.

manifold of TM , it suffices to show that (13.4) is smooth as a map

G→ TM . This however is the composition

G
Z−→ TG× TM ∼= T (G×M)

Dσ−−→ TM,

where Z is the smooth map g 7→
(
(g, 0), (p, ξ)

)
and the second map

is the canonical identification coming from Problem C.1. This is the

composition of smooth maps, and hence is smooth.

In general an action may have no stationary points. But if we re-

strict attention to the stabiliser group of a point (which is another

smooth Lie group by Proposition 13.3) then that point is automati-

cally stationary.

Theorem 13.12. Let σ be a transitive left smooth action of G on

M . Fix p ∈ M and let H := stabσ(p). Let ρ : G → G/H denote

the quotient map, and endow G/H with the smooth structure from

Corollary 13.7. Define

ϕ : G/H →M, ϕ(gH) := σg(p).

Then ϕ is a diffeomorphism, and hence M is a homogeneous space.

Proof. First observe that ϕ is well defined, since if h ∈ H then

σgh(p) = σg ◦ σh(p) = σg(p). We claim that ϕ is a bijection. Sur-

jectivity follows from transitivity of σ. If ϕ(g1H) = ϕ(g2H) then

σg−1
1 g2

(p) = p, whence g−1
1 g2 ∈ H and thus g1H = g2H. This shows

injectivity.
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To show that ϕ is smooth in a neighbourhood of a point gH, it

suffices to show that ϕ ◦ ρ is smooth near g. Indeed, if ϕ ◦ ρ is smooth

at g and ψ : G/H → G is a smooth local section of ρ at gH then

ϕ = (ϕ ◦ ρ) ◦ ψ is the composition of smooth maps. Now observe that

ϕ ◦ ρ = σ ◦ ip, where ıp : G → G ×M is the smooth map g 7→ (g, p).

Thus ϕ ◦ ρ is the composition of smooth maps, and hence is smooth.

We now show that ϕ is a diffeomorphism. We will do this by show-

ing that ϕ has constant rank. Left translation induces a transitive

smooth left action l̄ of G on G/H:

l̄g(g1H) := gg1H.

The map ϕ is (l̄, σ)-equivariant, since

ϕ ◦ l̄g(g1H) = ϕ(gg1H)

= σgg1(p)

= σg ◦ σg1
(p)

= σg ◦ ϕ(g1H).

Thus by Proposition 12.18 the map ϕ has constant rank, and then by

Problem C.7 ϕ is a diffeomorphism.

Theorem 13.12 tells us that we can define a homogeneous space

as a smooth manifold that admits a transitive Lie group action. We

emphasise however that a given smooth manifold can sometimes be

made into a homogeneous space in multiple ways.

Let us return to part (v) of Examples 12.13 and see how this fits

into the homogeneous space picture.

Example 13.13. The Lie group GL(m) acts on Rm. This in itself is

not very interesting, but observe the action of O(m) ⊂ GL(m) restricts

to a transitive action on Sm−1 ⊂ Rm by elementary linear algebra.

Moreover the isotropy subgroup of em = (0, 0, . . . , 0, 1) ∈ Sm−1 is given

by those matrices A ∈ O(m) of the form

A =


 B

 0
...

0

0 · · · 0 1


where B ∈ O(m − 1). We conclude that Sm−1 is the homogeneous

space

Sm−1 ∼= O(m)
/

O(m− 1).

The same argument works to show that

Sm−1 ∼= SO(m)
/

SO(m− 1).

Example 13.14. Let U(m) ⊂ GL(m;C) denote the unitary group and

SU(m) ⊂ U(m) the special unitary group. If we regard S2m−1 as the

unit sphere in Cm then a similar argument shows that

S2m−1 ∼= U(m)
/

U(m− 1) and S2m−1 ∼= SU(m)
/

SU(m− 1).
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Since SU(1) is just the 1× 1 identity matrix, taking m = 2 shows that

S3 is diffeomorphic to SU(2), and hence S3 can be given a Lie group

structure.

Remark 13.15. Not all smooth manifolds admit the structure of a

Lie group. For instance, Sm admits a Lie group structure only for

m = 0, 1 or m = 3. For m = 0 this is trivial. For m = 1, this was

part (vi) from Examples 10.9 above, and we just did the case of S3

in Example 13.14. The proof that no other sphere admits a Lie group

structure is quite tricky, but roughly speaking proceeds as follows:

suppose Sm admits a Lie group structure for n > 1. Since Sm is

simply connected for m > 1, the Lie group structure is necessarily

non-abelian. Next, one can show that any compact non-abelian Lie This will be an exercise on one of the
Problem Sheets next semester.group G carries a natural closed but not exact bi-invariant differential

3-form. Thus H3(G;R) 6= 0. For Sm this forces n = m = 3.

Next we return to part (ii) of Examples 12.13.

Definition 13.16. Let G be a Lie group and let c denote the conju-

gation action of G on itself. The identity e is a stationary point of this

action, and hence by Proposition 13.11 we obtain a Lie group homo-

morphism G → GL(g). This is called the adjoint representation

and is denoted by

Ad: G→ GL(g).

We usually write Ad(g) = Adg : g→ g.

We can then go one step further and differentiate Ad. This requires

us to look at the Lie algebra of GL(g), which we write as

gl(g) = {all linear maps g→ g} .

Definition 13.17. The derivative of the adjoint representation is

denoted by

ad := D(Ad)(e) : g→ gl(g).

We usually write ad(ξ) = adξ : g→ g.

By Proposition 11.7 the map ad is a Lie algebra homomorphism.

Moreover Proposition 12.5 gives us a commutative diagram:

g gl(g)

G GL(g)

ad

exp exp

Ad

The map ad has a pleasing description. The proof of the next result is

deferred to Problem Sheet F.

Proposition 13.18. Let G be a Lie group with Lie algebra g. Then

for ξ, ζ ∈ g one has adξ(ζ) = [ξ, ζ].
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Bonus Material for Lecture 13

In this bonus section we survey one the most important infinite-

dimensional Lie groups: namely, the diffeomorphism group of a com-

pact manifold.

Let M be a compact manifold. The group Diff(M) can itself be

given a Fréchet manifold structure. Under this Fréchet manifold struc-

ture, one can show that composition

µ : Diff(M)×Diff(M)→ Diff(M), µ(ϕ,ψ) := ϕ ◦ ψ (13.5)

is smooth. Similarly the map ϕ 7→ ϕ−1 is smooth. This means that

Diff(M) is an infinite-dimensional Fréchet Lie group.

A Fréchet manifold is a weaker and less useful concept than that of

a Banach manifold. The difference is that a Fréchet manifold is locally

modelled on a Fréchet space rather than a Banach space. The reason

they are less useful is that the Inverse and Implicit Function Theorems

are valid for Banach manifolds, but not for Fréchet manifolds.

Sadly we have no choice in the matter. Even if we wanted to

work with lower regularity, whilst the space of Ck-diffeomorphisms

Ck(M,M) does have a nice Banach manifold structure, it is not a Lie

group. Indeed, with µ as in (13.5), whilst the map

µ(·, ψ) : Ck(M,M)→ Ck(M,M), ϕ 7→ ϕ ◦ ψ.

is smooth, the map

µ(ϕ, ·) : Ck(M,M)→ Ck(M,M), ψ 7→ ϕ ◦ ψ.

is not even continuous! Exercise: Why?

In any case, if we give Diff(M) its Fréchet smooth structure, then

one can show that

TidDiff(M) = X(M),

(as one would expect, the tangent space to an infinite-dimensional

manifold is itself infinite-dimensional).

We now go through a few of the Lie-theoretic concepts we have

studied, and see how they fit into the infinite dimensional picture:

(i) One-parameter subgroup of Diff(M) are precisely one-parameter

groups of diffeomorphisms in the sense of Definition 11.12, i.e.

paths t 7→ Φt such that Φ0 = id and Φs+t = Φs ◦ Φt. Denote by X

the infinitesimal generator of {Φt}, defined in (9.7) If we adopt the

notation from introduced before Proposition 11.14 then the curve

t 7→ Φt is the maximal integral curve γX .

(ii) The exponential map exp: X(M) → Diff(M) assigns to a vector

field X its flow Φt – this is well-defined by Corollary 9.19.

(iii) The conjugation action

cϕ(ψ) := ϕ ◦ ψ ◦ ϕ−1
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gives rise to the adjoint map

Adϕ : X(M)→ X(M)

which one easily sees is given by

Adϕ(X) = ϕ?X.

(iv) If we differentiate this to get ad: X(M)→ gl(X(M)), we find that

adX(Y ) = LYX = [Y,X], ∀X,Y ∈ X(M),

Equation (iv) is somewhat problematic, since this sign error

would appear to contradict Proposition 13.18!

Of course there is no actual contradiction, since this is all a matter of

conventions. What we have learnt is:

If we want to think of X(M) as the Lie algebra of the infinite-

dimensional Lie group Diff(M) then the Lie bracket should

have been defined with the opposite sign convention:

[X,Y ] := LYX.

Some brave authors do indeed define the Lie bracket of vector fields

in this way. Nevertheless we have chosen the “incorrect” sign conven-

tion so as to be consistent with the vast majority of the literature.



Will J. Merry

LECTURE 14

Distributions and Integrability

In this lecture we introduce distributions on manifolds and prove the

local version of the famous Frobenius Theorem. The global version

of this theorem – which will be proved next lecture – is the corner-

stone of an area of differential geometry called foliation theory. This

semester we will use the (global) Frobenius Theorem to prove the Lie

Correspondence Theorem 11.11 and the Quotient Manifold Theorem

13.6. Next semester, we will use the Frobenius Theorem to show that

flat connections on vector bundles have trivial restricted holonomy

groups.

We begin with the following preliminary result.

Proposition 14.1. Let M be a smooth manifold and W ⊂ M a non-

empty open set. Suppose X1, . . . , Xl ∈ X(W ) are vector fields such

that

(i) There exists p ∈ W such that the vectors Xi(p) are all linearly

independent in TpM (and thus necessarily l ≤ m)

(ii) For all i, j one has [Xi, Xj ] ≡ 0.

Then there exists a chart (U, x) about p with U ⊂W such that

∂

∂xi
= Xi|U , ∀ 1 ≤ i ≤ l.

An immediate corollary is the following extension of Problem D.2.

Corollary 14.2. Let M be a smooth manifold and W ⊂ M a non-

empty open set. Let X ∈ X(W ) and suppose X(p) 6= 0 for some

p ∈ W . Then there exists a chart (U, x) about p with U ⊂ W such

that X|U = ∂
∂x1 .

Proof of Proposition 14.1. We prove the result in two steps. The first

step reduces the problem to Rm. That this is possible should be clear

from the statement, since the assertion is visibly local.

1. If x : U → O is any chart about p then the map x∗ : X(U) →
X(O) satisfies

x∗

(
∂

∂xi

)
=

∂

∂ui
, ∀ 1 ≤ i ≤ m.

where (ui) are the canonical local coordinates on O ⊂ Rm. Since x∗ is

an isomorphism, it is sufficient to find such a chart x so that

x∗(Xi|U ) =
∂

∂ui
, ∀ 1 ≤ i ≤ l. (14.1)

Now let y : U → O be an arbitrary chart about p such that y(p) = 0.

We will modify y to produce a chart x satisfying (14.1). Let Yi ∈ X(O)

denote the unique vector field such that

y∗(Xi|U ) = Yi.
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Since the Xi are linearly independent at p, the Yi are linearly indepen-

dent at 0. Thus there exists a linear isomorphism λ : Rm → Rm that

maps J−1
0 (Yi(0)) to the standard basis vector ei for each 1 ≤ i ≤ l.

Set ỹ := λ ◦ y and set Ỹi = ỹ∗(Xi|U ). Then

Ỹi(0) =
∂

∂ui

∣∣∣
0

∀ 1 ≤ i ≤ l. (14.2)

We emphasise this identity only holds at the point 0. The aim now

is to construct a local diffeomorphism h defined on a neighbourhood

V ⊂ Rm about 0 such that h(0) = 0 and such that on V

h∗(Ỹi) =
∂

∂ui
∀ 1 ≤ i ≤ l. (14.3)

Then setting x := h ◦ ỹ one has where defined that

x∗(Xi) = h∗ ◦ ỹ∗(Xi) = h∗(Ỹi) =
∂

∂ui
.

2. In this second step we construct such an h. Note by Proposition

8.19 that the vector fields Ỹi satisfy [Ỹi, Ỹj ] ≡ 0. Let Φit denote the

flow of Ỹi. For a sufficiently small neighbourhood Ω of 0 in Rm there

is a well defined smooth function f : Ω → Rm given by the following

somewhat improbable looking formula:

f(u1, . . . , um) :=
(
Φ1
u1 ◦ · · · ◦ Φlul

)
(0, . . . , 0, ul+1, . . . , um).

Let g ∈ C∞(Rm) and fix q = (a1, . . . , am) ∈ Ω. We first consider what

Df(q) does to ∂
∂u1

∣∣
q
. Namely:

Df(q)

(
∂

∂u1

∣∣∣
q

)
(g) =

∂

∂u1

∣∣∣
q
(g ◦ f)

= lim
t→0

(
g ◦ Φ1

a1+t ◦ · · · ◦ Φkuk
)
(0, . . . , 0, al+1, . . . , am)− (g ◦ f)(q)

t

= lim
t→0

g ◦ Φ1
t (f(q))− g(f(q))

t

= Ỹ1(f(q))(g).

Since g and q were arbitrary, this shows that f∗
(
∂
∂u1

)
= Ỹ1. Since the

Lie brackets vanish, using induction and Proposition 10.6 we have for

any 1 ≤ i ≤ l that

Φ1
u1 ◦ · · · ◦ Φiui ◦ · · · ◦ Φlul = Φiui ◦ · · · ◦ Φ1

u1 ◦ · · · ◦ Φlul ,

and thus exactly the same argument shows that

f∗

(
∂

∂ui

)
= Ỹi, ∀ 1 ≤ i ≤ l. (14.4)

In particular, since Ỹi(0) = ∂
∂ui

∣∣
0

by (14.2),

Df(0)

(
∂

∂ui

∣∣∣
0

)
=

∂

∂ui

∣∣∣
0
, ∀ 1 ≤ i ≤ l, (14.5)
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In fact, we claim that (14.5) holds for all 1 ≤ i ≤ m, and not just

1 ≤ i ≤ l. To see this take l < i ≤ m and observe with g as above that

Df(0)

(
∂

∂ui

∣∣∣
0

)
(g) =

∂

∂ui

∣∣∣
0
(g ◦ f)

= lim
t→0

g(0, . . . , 0, t, 0 . . . , 0)− g(0)

t

=
∂

∂ui

∣∣∣
0
(g).

This shows that (14.5) holds for l < i ≤ m as well, and hence Df(0) is

the identity. Thus by the Inverse Function Theorem 5.9 there exists a

neighbourhood V ⊂ Ω containing 0 such that f |V is a diffeomorphism.

Set h := f |−1
V . Then (14.4) implies that the diffeomorphism h satisfies

(14.3) and the proof is complete.

We now introduce the notion of a distribution.

Definition 14.3. Let M be a smooth manifold of dimension m, and

let l ≤ m. A distribution ∆ on M of dimension l is a choice of

l-dimensional linear subspace ∆p ⊂ TpM for each p ∈ M that varies

smoothly with p in the following sense: For each point p ∈ M there

exists a neighbourhood U of p and l vector fields X1, . . . , Xl ∈ X(U)

such that

∆q = spanR
{
X1(q), . . . , Xl(q)

}
, ∀ q ∈ U.

The simplest example is l = 1.

Example 14.4. A vector field X is non-vanishing if X(p) 6= 0 for

all p ∈ M . A non-vanishing vector field X defines a one-dimensional

distribution by setting ∆p := spanR{X(p)} for each p ∈M .

Remark 14.5. Not every manifold admits such a vector field. Indeed,

if m is even then every vector field on Sm vanishes in at least one

point. This is the so-called “Hairy Ball Theorem”, which you will be

asked to prove later on in the course. In fact, the Hairy Ball Theorem

is a purely topological result, and thus the smoothness assumption

is not necessary: if m is even then any continuous map Sm → TSm

satisfying the section property 8.1 must vanish somewhere. This can

be proved by applying the Whitney Approximation Theorem 7.13 to

the smooth case, but it is also easy to show using some basic algebraic

topology.

Definition 14.6. Let ∆ be an l-dimensional distribution on M , and

suppose L ⊂ M is an l-dimensional immersed submanifold. We say

that L is an integral manifold of ∆ if

Dι(p)TpL = ∆p, ∀ p ∈ L,

where ι : L ↪→M is the inclusion.

In the one-dimensional case, integral manifolds always exist about

every point. Indeed, suppose ∆ is a one-dimensional distribution.

Given any p ∈ M there exists a neighbourhood W of p and a vector
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field X ∈ X(W ) such that ∆q = spanR{X(q)} for all q ∈ W . Since

in particular X(p) 6= 0, by Corollary 14.2 there exists a chart (U, x)

about p with U ⊂W such that X|U = ∂
∂x1 . Then the set

L :=
{
q ∈ U | x2(q) = · · · = xm(q) = 0

}
is an embedded one-dimensional submanifold of M by Proposition 6.7.

Moreover the proof of Proposition 6.7 shows that Dι(q)(TqL) = ∂
∂x1

∣∣
q

The case l = 1 of Theorem 14.13

shows that every connected integral
manifold of ∆ contained in U is of

this form.

for all q ∈ L, where ι : L ↪→ M is the inclusion. Thus L is an integral

manifold of ∆ containing p.

For higher dimensional distributions, integral manifolds need not

exist. Here is an example.

Example 14.7. Consider the distribution on R3 spanned by the vector

field

Figure 14.1: The standard con-

tact distribution on R3. (Taken

from Wikipedia.)

X :=
∂

∂u1
+ u2 ∂

∂u3
, Y :=

∂

∂u2
.

We claim this distribution has no integral manifolds through the ori-

gin. Indeed, suppose such an L existed. Then (as the picture indi-

cates), one would have T(0,0,0)L equal to the (u1, u2)-plane. But now

suppose γ : S1 → L is a closed curve in L that circles round the u3-

axis. Since γ is tangent to ∆, one readily sees that the u3-component

of γ is an increasing function. But then γ endlessly spirals upwards,

and hence cannot close up – contradiction.

Example 14.7 is the starting point for the field of geometry called

contact geometry. In general a contact distribution on a man-

ifold is a distribution which is “maximally” non-integrable. Such

a manifold is necessarily odd-dimensional. Contact manifolds are

the odd-dimensional cousins of symplectic manifolds. Sadly we

won’t have time to study either contact or symplectic manifolds in this

course.

We now formulate a condition that rules out such “pathologies”.

Definition 14.8. Let ∆ be a distribution on M and let X be a vector

field on M . We say that X belongs to ∆ if X(p) ∈ ∆p for each

p ∈ M . Let X(∆,M) ⊂ X(M) denote the set of vector fields belonging

to ∆.

Since ∆p is a linear subspace of TpM for each p ∈ M , X(∆,M) is a

linear subspace of the infinite-dimensional vector space X(M).

Definition 14.9. A distribution ∆ is said to be integrable if X(∆,M) Some authors use the word involutive
instead of integrable to describe a
distribution satisfying the conditions

of Definition 14.9

is a Lie subalgebra of X(M), that is

X,Y ∈ X(∆,M) ⇒ [X,Y ] ∈ X(∆,M)

Here are two conditions that guaranteee integrability.

Lemma 14.10. Let ∆ be an l-dimensional distribution on M . Suppose

for every p ∈ M there exists a neighbourhood U of p and l vector

fields X1, . . . , Xl ∈ X(∆, U) such that ∆ is spanned by the Xi over U

and such that [Xi, Xj ] ∈ X(∆|U , U) for all 1 ≤ i, j ≤ l. Then ∆ is

integrable.

https://en.wikipedia.org/wiki/Contact_geometry
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Proof. Let p ∈ M and let X and Y be vector fields that belong to

∆. Choose a neighbourhood U of p for which there exist vector fields

spanning ∆ as in the hypotheses of the Lemma. Then on U we can

write

X|U = f iXi, Y |U = giXi

for some smooth functions f i, gi : U → R. By Problem D.5 one has on If you are worried why these functions

are smooth, see Remark 20.10.U that

[X,Y ]|U = [f iXi, g
jXj ]

= f igj [Xi, Xj ] + f iXi(g
j)Xj − gjXj(f

i)Xi.

Since [Xi, Xj ](q) ∈ ∆q for all q ∈ U , this shows that [X,Y ] belongs

to ∆ for every point in U . Since p was arbitrary, it follows that [X,Y ]

belongs to ∆.

Lemma 14.11. Let ∆ be a distribution on M . Assume that for every

p ∈ M there exists an integral manifold Lp of ∆ with p ∈ Lp. Then ∆

is integrable.

Proof. Let X and Y belong to ∆. Fix an arbitrary point p ∈ M , and

let ιp : Lp ↪→ M denote the inclusion. In the language of Problem D.7,

X and Y are tangent to Lp. By part (iii) of Problem D.7, [X,Y ] is

also tangent to Lp, or equivalently, [X,Y ](p) ∈ Dιp(p)(TpLp) = ∆p.

Since p was arbitrary, we conclude [X,Y ] belongs to ∆.

A more difficult result states that the converse to Lemma 14.11

holds.

Notation. Let Il := (−1, 1)l denote the l-dimensional open unit cube,

and write an element of Il as a tuple a = (a1, . . . , al).

Definition 14.12. A shifted slice in M of dimension l is an embed-

ded submanifold of the form

L(a) :=
{
p ∈ U | xl+1(p) = a1, . . . , xm(p) = am−l

}
,

for some element a = (a1, . . . , am−l) ∈ Im−l.

Thus the difference between a shifted slice and a normal slice is

that instead of requiring the last m − l coordinates to all be zero, we

merely require them to be some fixed element in Im−l. Shifted slices

are no more general than normal slices; nevertheless, they are a useful

bookkeeping tool.

Theorem 14.13 (The Local Frobenius Theorem). Let M be a smooth

manifold and let ∆ be an integrable l-dimensional distribution on M .

Then for every p ∈ M there exists a chart x : U → Im with x(p) = 0

and such that for any a ∈ Im−l, the shifted slice

L(a) :=
{
q ∈ U | xl+1(q) = a1, . . . , xm(q) = am−l

}
is an integral manifold of ∆. Moreover any connected integral mani-

fold of ∆ contained in U is contained in such a shifted slice.
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Proof. Once again, the statement is purely local, so by arguing as in

Step 1 of Proposition 14.1, we may assume that M = Rm, p = 0, and Exercise: Fill in these details!

∆0 is spanned by the vectors ∂
∂ui

∣∣
0

for i = 1, . . . , l. We argue in three

steps.

1. Write Rm = Rl × Rm−l. Let ρ1 and ρ2 denote the two projec-

tions Rm → Rl and Rm−l respectively:

ρ1(u1, . . . , um) := (u1, . . . , ul), ρ2(u1, . . . , um) := (ul+1, . . . , um),

Let

δq := Dρ1(q)|∆q
: ∆q → TqRl

Then q 7→ δq is a smooth family of linear maps, whose domain ranges

smoothly with q. By assumption δ0 is an isomorphism. Since being in-

vertible is an open condition, it follows that there is a neighbourhood This is because q 7→ det δq is a
continuous function.W of 0 in Rm such that δq is an isomorphism for all q ∈W .

Thus up to possibly shrinking W , there exist unique vector fields

Xi ∈ X(∆,W ) that are ρ1-related to ∂
∂ui for i = 1, . . . , l. By part

(ii) of Problem D.6 one has that [Xi, Xj ] is ρ1-related to [ ∂
∂ui ,

∂
∂uj ].

By Proposition 8.10, [ ∂
∂ui ,

∂
∂uj ] = 0, and thus [Xi, Xj ] is ρ1-related to

the zero vector field. Now since ∆ is integrable, [Xi, Xj ] belongs to This is the only place in the proof
where we use integrability of ∆!∆, and since Dρ1(q)|∆q

= δq is injective for q ∈ W , it follows that

[Xi, Xj ] = 0.

2. Thus we can apply Proposition 14.1 to obtain a chart x : U →
Im defined on U ⊂W such that Xi|U = ∂

∂xi . Now let

ϕ := ρ2 ◦ x : U → Im−l

Then ϕ is a smooth surjective submersion, and thus by the Implicit

Function Theorem 6.10, for any a ∈ Im−l, the set L(a) := ϕ−1(a) is

an embedded submanifold of M , and any q ∈ U belongs to a unique

L(a) – namely, a = ϕ(q). Moreover by Proposition 6.15, if we denote

by ι : L(a) ↪→ U the inclusion then for any q ∈ L(a) one has

Dι(q)TqL(a) = kerDϕ(q)

=
{
ξ ∈ TqU | ξ(xi) = 0 for i = l + 1, . . . ,m

}
= spanR

{
∂

∂xi

∣∣∣
q
| 1 ≤ i ≤ l

}
= ∆q.

3. It remains to prove the last sentence of the theorem. Suppose

L is an arbitrary integral manifold of ∆ contained in U . Then for any

q ∈ L and ξ ∈ TqL, one has (Dι(q)ξ)(xi) = 0 for i = l + 1, . . . ,m.

Thus D(xi ◦ ι)(q) is the zero map for each i = l + 1, . . . ,m, and hence

q 7→ xi(ι(q)) is a locally constant function. If L is connected, then

it is constant, and thus L is contained in a single shifted slice. This

completes the proof.



Will J. Merry

LECTURE 15

Foliations and the Frobenius Theorem

In this lecture we will globalise the Local Frobenius Theorem 14.13,

and then us the Global Frobenius Theorem to prove the two outstand-

ing results from Lectures 11 and 13: the Lie Correspondence Theorem

11.11 and the Quotient Manifold Theorem 13.6.

We begin with an observation which will be useful later. The inte-

gral manifolds produced by the Local Frobenius Theorem are always

embedded, despite the fact that Definition 14.6 only required them to

be immersed. This is because we have only looked at integral subman-

ifolds contained in some (small) set U . In general, integral manifolds

do not always have to be embedded. Nevertheless, the Local Frobenius

Theorem 14.13 shows that that an arbitrary integral manifold retains

one of the important properties of embedded submanifolds. We now

formalise the condition used in the second bullet point in the proof of

Proposition 10.15 as a definition.

Definition 15.1. Let L ⊂ M be an immersed submanifold. We say

that L is weakly embedded if for every smooth manifold N and

every smooth map ϕ : N → M such that ϕ(N) ⊂ L, the map ϕ is also

smooth as a map N → L.

Thus embedded submanifolds are automatically weakly embedded.

Integral manifolds are too, as the following result shows.

Proposition 15.2. Let ∆ be an integrable distribution on a smooth

manifold M . Every integral manifold L of ∆ is a weakly embedded

submanifold of M .

Proof. Assume that ϕ : N →M is a smooth map such that ϕ(N) ⊂ L.

Fix a point p ∈ N . By the Local Frobenius Theorem there exists a

chart x : U → Im with x(ϕ(p)) = 0 such that all connected integral

submanifolds of ∆ contained in U are contained in shifted slices

L(a) =
{
q ∈ U | xl+1(q) = a1, . . . , xm(q) = am−l

}
,

for a ∈ Im−l. Now consider L ∩ U . Since U is open, this is another

immersed submanifold, and hence – by definition of a manifold – has A topological space with uncountably
many components can never be

separable.
at most countably many connected components. Each such component

is then a connected integral submanifold of ∆ contained in U , and so

by the Local Frobenius Theorem is contained in some shifted slice.

Thus there are countably many ak ∈ Im−l such that

L ∩ U ⊂
⋃
k

L(ak). (15.1)

Now choose a chart (V, y) on N about p such that V is connected and

ϕ(V ) ⊂ L ∩ U . Then the function

f := x ◦ ϕ ◦ y−1 : y(V )→ Im

Last modified: July 17, 2021.
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is smooth. Write f i := ui ◦ f as usual so that f = (f1, . . . , fm). Then

by (15.1) the last (m− l) functions (f l+1, . . . , fm) can only take values

in the countable set {ak}∞k=1, and therefore they are locally constant.

Since V is connected, they are constant. Thus ϕ(V ) is contained in a

single shifted slice L(ak). Since L ∩ L(ak) is an open subset of L that

is embedded in M , it follows that ϕ|V : V → L∩L(ak) is smooth. Thus

also the composition ϕ|V : V → L ∩ L(ak) ↪→ L is smooth. Since p was

an arbitrary point of N the claim follows.

We now globalise Theorem 14.13. We begin with a definition.

Definition 15.3. Let M be a smooth manifold. An l-dimensional

foliation F of M is a partition of M into l-dimensional connected

immersed submanifolds, called the leaves of the foliation, such that:

(i) The collection of tangent spaces to the leaves defines a distribution

∆ on M .

(ii) Any connected integral manifold of ∆ is contained in a leaf of F .

Each leaf L of F is called a maximal integral manifold of ∆. One

says that the distribution ∆ is induced by F .

Here is the global version of Theorem 14.13.

Theorem 15.4 (The Global Frobenius Theorem). Let ∆ be an inte-

grable distribution on M . Then ∆ is induced by a foliation.

Proof. Let ∆ be an integrable distribution. By the Local Frobenius

Theorem 14.13 for any point p ∈ M there is a chart x : U → Im such

that the slices

L(a) :=
{
q ∈ U | xl+1(q) = a1, . . . , xm(q) = am−l

}
(15.2)

for a ∈ Im−l are integral manifolds of ∆. Since M is a separable

metric space, we may choose a countable collection (Uk, xk)k∈N of

charts whose domains Uk form an open cover of M . Now let L denote

the collection of all slices L(a) of the form (15.2) for all of the charts

xk. Define an equivalence relation on L by declaring that L ∼ L′

if there exists a finite sequence L = L0, L1, . . . , Lh = L′ such that

Li ∩ Li+1 6= ∅ for i = 0, . . . , h− 1.

Suppose L ⊂ Ui is a shifted slice such that L ∩ Uj 6= ∅. Since Uj

is open, L ∩ Uj is a manifold, and hence L ∩ Uj has at most count-

ably many components (we already used this argument in the proof

of Proposition 15.2). It follows that each equivalence class can only

contain countably many shifted slices L ∈ L.

Now fix one such equivalence class [L] and enumerate the countably

many elements belonging to L as {Ki}i∈N, with Ki∩Ki+1 6= ∅ for each

i. For fixed j ∈ N, if

L̃j :=

j⋃
i=1

Ki

then L̃j is a finite union of connected embedded integral manifolds of

∆ , and thus is itself an connected embedded integral manifold of ∆.
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This means that if we set

L̃ :=

∞⋃
j=1

L̃j

then L̃ is a union of an increasing sequence of connected embedded

integral manifolds of ∆, and hence is itself a connected immersed Exercise: Why?

integral manifold of ∆. If [L] 6= [L′] are two distinct equivalence

classes then the corresponding unions L̃ and L̃′ are disjoint. Since by

definition any connected integral manifold of ∆ is contained in such

a union, this shows that the set of these unions form a foliation of M

which is induced by ∆. This completes the proof.

We now provide the promised proofs of the Lie Algebra Correspon-

dence Theorem 11.11 and the Quotient Manifold Theorem 13.6. For

convenience, we restate both results here.

Theorem 15.5 (The Lie Correspondence Theorem). Let G be a Lie

group with Lie algebra g. If h is a Lie subalgebra of g then there is a

unique connected Lie subgroup H of G whose Lie algebra is h.

Proof. Given g ∈ G, let ∆g denote the subspace of TgG given by

the set of all vectors of the form Xξ(g), where Xξ ∈ Xl(G) is a left-

invariant vector field such that ξ = Xξ(e) ∈ h ⊂ g. Thus

∆g := {Dlg(e)ξ | ξ ∈ h} .

To see that ∆ really is a distribution, note that if {ξi} is a basis of h

then the left-invariant vector fields {Xξi(g)} span ∆g at every point

g ∈ G. Moreover since h is a Lie subalgebra, [ξi, ξj ] ∈ h for each i, j

and thus [Xξi , Xξj ] = X[ξi,ξj ] belongs to ∆ for every i, j. Thus by

Lemma 14.10 it follows that ∆ is integrable. By the Global Frobe-

nius Theorem 15.4, ∆ induces a foliation of G. Let H denote the

leaf containing e. For any g1 ∈ G we have Dlg1
(g)(∆g) = ∆g1g by

construction, and hence Dlg1
leaves the distribution invariant. Thus

lg1 permutes the leaves of the foliation, i.e. it maps the leaf passing

through g diffeomorphically onto the leaf passing through g1g. In par-

ticular, if h ∈ H then lh−1 maps H to the leaf containing e, which is

just H again. Thus lh−1(H) = H, which proves that H is a subgroup.

It remains to prove that the multiplication map m : H × H → H is

smooth. We know that the multiplication m : H × H → G is smooth

and m(H ×H) ⊂ H. Thus by Proposition 15.2, m is also smooth as a

map H ×H → H. This complete the proof.

Remark 15.6. This proof also shows that every Lie subgroup H of a

Lie group G is weakly embedded.

Theorem 15.7 (The Quotient Manifold Theorem). Let σ be a smooth

action of G on M which is both proper and free. Then the quotient

space M/G admits the structure of a topological manifold of dimen-

sion dimM − dimG. Moreover there exists a unique smooth structure

on M/G such that the quotient map ρ : M → M/G is a smooth sub-

mersion.
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The proof is non-examinable, and hence is delayed by one more

line. . .

Bonus Material for Lecture 15

. . . to here.

Proof. We prove the result in five steps. Let

m := dimM, l := dimG.

We already know from Lemma 13.5 that M/G is Hausdorff. More-

over in the proof of Lemma 13.5 we showed that ρ is an open map.

Thus if {Bi} is a countable basis for the topology on M then {ρ(Bi)}
is a countable basis for the quotient topology on M/G. By Proposition

1.32 if we can show that M/G is locally Euclidean, it will follow that

M/G is a topological manifold. In fact, we will directly construct a

smooth atlas on M/G.

1. We now start the construction of a smooth atlas on M/G. For

p ∈M , let

∆p := Tporbσ(p)

denote the tangent space of the orbit. By Corollary 13.2 the subspace

∆p has dimension l. We will show that ∆ is an l-dimensional distribu-

tion on M . The idea is similar to the previous proof: let {ξi} denote a

basis for g. Define a vector field Yi on M by

Yi(p) := Dσp(e)ξi ∈ TpM.

The flow of Yi is given by σexp tξ. By construction, Yi belongs to ∆ for

every p ∈ M . Since dim g = dim ∆, it follows that {Yi} span ∆ every-

where. Thus ∆ is a distribution. Since every point in M is contained

in an integral manifold, Lemma 14.11 implies that this distribution

is integrable. By the Global Frobenius Theorem 15.4, ∆ induces a

foliation of M . By Problems F.6 and F.7 the leaf of the foliation con- If G is connected, then the leaf is
simply the orbit orbσ(p).taining p is the connected component of orbσ(p) containing p. Thus

as in the previous proof, we see that σg permutes the leaves of this

foliation, i.e. it sends the leaf through p to the leaf through σg(p).

2. Fix p ∈ M . In this step we apply the Local Frobenius Theorem

14.13. This provides us with a chart x : U → Im about p, where

σ(p) = 0, such that each shifted slice{
q ∈ U | xl+1(q) = a1, . . . xm(q) = am−l

}
for a = (a1, . . . , am−l) ∈ Im−l is contained in an orbit. Set V :=

ρ(U) ⊂M/G. Let

K := {q ∈ U | x1(q) = · · · = xl(q) = 0},
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so that K is a connected embedded submanifold of M . Consider now

the restriction of the action σ to G×K:

σ : G×K →M.

Since dimK = m − l, G ×K has dimension m. Note that σ|{e}×K is

just the inclusion ı : K ↪→M . Under the identification T(e,p)(G×K) ∼=
g ⊕ TpK given by Problem C.1 the differential of σ at a point (e, p) is

given by

Dσ(e, p)(ξ, ζ) = Dσp(e)ξ +Dı(p)ζ, ξ ∈ g, ζ ∈ TpM.

Since K is an immersed submanifold, Dı(p) is injective. By Corollary

13.2 the map Dσp(g) is an isomorphism. Thus Dσ(g, p) is injective

linear map between two vector spaces of the same dimension, and

hence is a linear isomorphism. Thus the Inverse Function Theorem

5.10 implies that there exists a neighbourhood W of (e, p) in G × K
such that σ|W is a diffeomorphism.

3. In this step we prove that, up to replacing U with a smaller

neighbourhood of p if necessary, the map ρ|K : K → V is in fact

homeomorphism. We begin by showing ρ|K is a bijective.

• Surjective: This is clear, since K intersects every shifted slice in

U , so that ρ(K) = ρ(U) = V .

• Injective: We argue by contradiction: if the claim is false then we Explicitly: if there exists no neigh-
bourhood U0 ⊂ U of p such that

ρ|K∩U0 is injective, then . . .
can find two sequences (pk), (qk) in U such that pk → p and qk → p

and

pk 6= qk, but ρ(pk) = ρ(qk), ∀ k ∈ N.

Since ρ(pk) = ρ(qk) the points pk, qk lie in the same orbit. Thus

there exists gk ∈ G such that qk = σgk(pk). By Lemma 12.12, up to

passing to a subsequence the sequence gk converges to some g ∈ G.

Then σg(p) = p, and hence as the action is free we must have g = e.

For sufficiently large k, we therefore have

(e, pk) and (gk, qk) in W, σ(e, pk) = σ(gk, qk).

This contradicts our assumption that σ is a diffeomorphism (and

thus in particular injective) on W .

Thus ρ|K0
is bijective, as claimed. Since ρ is an open map, it follows

that ρ|K0
is a homeomorphism.

4. We are now ready to construct our smooth atlas, and thus prove

that M/G is a smooth manifold. With K as in the previous step, we

define the homeomorphism

y := ρ2 ◦ x ◦ ρ|−1
K : V → Im−l.

The existence of y shows that M/G is locally Euclidean, and hence

M/G is a topological manifold of dimension m − l. We will take y as

our chart on M/G around ρ(p). To show that the collection of charts

(V, y) form a smooth atlas on M/G, we must check that the transition
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functions are smooth. So suppose (V1, y1) and (V2, y2) are constructed

above with V1 ∩ V2 6= ∅ (with corresponding sets Ki, Ui and charts xi).

We must show

y2 ◦ y−1
1 : y1(V1 ∩ V2)→ y2(V1 ∩ V2)

is smooth. If U1 ∩ U2 6= ∅ then the claim is basically obvious, since the

composition x−1
2 ◦ x1 is smooth where defined. For the general case,

suppose q1 ∈ U1 and q2 ∈ U2 are such that ρ(q1) = ρ(q2). Thus there

exists g ∈ G such that σg(q1) = q2. Let x̃1 = x1 ◦ σ−1
g , and let ỹ1 be

defined accordingly. Then the argument above shows that y2 ◦ ỹ−1
1 is

smooth. However by expanding the definitions one sees that actually

ỹ1 = y1 near ρ(q1), and hence y2 ◦ y−1
1 is smooth near ρ(q1). Since

ρ(q1) = ρ(q2) was an arbitrary point of the intersection V1 ∩ V2, it

follows that y2 ◦ y−1
1 is smooth.

5. We have now shown that M/G is a smooth manifold. The map

ρ : M →M/G is smooth, since with the notation as above,

y ◦ ρ ◦ x−1 = ρ2,

which is smooth. It remains to show that this is the unique smooth

structure on M/G for which ρ : M → M/G is a smooth submersion.

Suppose (M/G)′ is the same topological manifold, but endowed with a

different smooth atlas for which ρ is a smooth submersion. We claim

that id : M/G→ (M/G)′ is a diffeomorphism:

M

M/G (M/G)′

ρ ρ

id

Fix p ∈ M . By Proposition 6.13 there exists a neighbourhood U

of p and a neighbourhood V of ρ(p) together with a smooth (with

respect to the smooth structure on M/G) map ψ : V → U such that

ρ ◦ ψ = idV . Thus the identity map id |U : U ⊂ M/G → U ⊂ (M/G)′

is smooth. Since p was arbitrary, id : M/G → (M/G)′ is smooth.

Reversing the roles of M/G and (M/G)′ shows that id : (M/G)′ →
M/G is also smooth, and hence a diffeomorphism. Thus the smooth

atlases on M/G and (M/G)′ both define the same smooth structure.

This completes the proof.
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LECTURE 16

Bundles

In this lecture we define the general notion of a fibre bundle. This is,

roughly speaking, a space that locally looks like a product. Whilst fi-

bre bundles are important in many areas of topology, they are slightly

too vague to be useful for us. We therefore quickly specialise to the

two special types of fibre bundles used in differential geometry: vec-

tor bundles and principal bundles. The study of such bundles will

make up the majority of the rest of the course.

Definitions 16.1. Let E,M and L be smooth manifolds, and suppose

π : E → M is a smooth surjective map. We say that π : E → M is a

fibre bundle over M with fibre L if for every point p ∈ M there

exists a neighbourhood U of p and a smooth map

ε : π−1(U)→ L

such that

(π, ε) : π−1(U)→ U × L

is a diffeomorphism. We call ε a bundle chart for E. A bundle There are no compatibility conditions

in the definition of a bundle atlas.

This is because all the spaces involved
are already assumed to be manifold.

atlas on E is any collection {(Ua, εa) | a ∈ A} of bundle charts such

that the sets Ua form an open cover of M .

We call E the total space of the bundle, M the base space, and

L the fibre. We use the notation L → E
π−→ M to denote a fibre This is just notation: the arrow

L → E does not represent any one

particular map.
bundle E over M with fibre L. When no confusion is possible we

shorten the notation L→ E
π−→M to simply E.

We should really say “smooth fibre bundle”, but since we won’t

ever have cause in this course to look at non-smooth fibre bundles, we

omit the adjective smooth.

If ε : π−1(U) → L is a bundle chart, it is convenient to denote

by ε̂ the map (π, ε). Thus ε̂ is a diffeomorphism such that the

following commutes:

π−1(U) U × L

U

ε̂

π pr1

We call ε̂ a local trivialisation of E. Thus there is a one-to-

one correspondence between local trivialisations and bundle

charts. We will use this notation without further comment for

the rest of the course.
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Convention. The total space of a fibre bundle will usually be de- Principal bundles are an exception to

this; see Definition below.noted by E or F . As with Lie groups, this means that the dimension

of such a total space is not written with the corresponding lower case

letter. However in this case there is no confusion, since if L→ E
π−→M

is a fibre bundle then the existence of local trivialisations force

dimE = m+ l.

We normally write points in fibre bundles with the letters u and v.

Examples 16.2. Here are two examples:

(i) The simplest example of a fibre bundle is the product manifold

E = M ×L with π : M ×L→M the first projection. In this case we

can take U to be all of M and define ε̂ : M × L → M × L to be the

identity map. More generally, any fibre bundle E which is globally

diffeomorphic to M × L is called a trivial bundle.

(ii) A sphere bundle is a fibre bundle Sl → E
π−→ M . Sphere bundles

are particularly important in algebraic topology. On Problem Sheet

G you will show that the Klein bottle is an S1-bundle over S1.

Definition 16.3. Given a fibre bundle L → E
π−→ M , we set Ep :=

π−1(p) for p ∈M and call Ep the fibre over p.

If (U, ε) is a bundle chart on E, then for p ∈ U we denote by

εp : Ep → L the restriction of ε to the fibre Ep. These maps are

diffeomorphisms, as the next lemma shows.

Lemma 16.4. Let L → E
π−→ M be a fibre bundle. Then π is a

surjective submersion, and each fibre Ep is an embedded submanifold

of E diffeomorphic to L.

Proof. Fix p ∈ M , and let ε : π−1(U) → L be a bundle chart such

that p ∈ U , and let pr1 : U × L → U and pr2 : U × L → L denote the

two projections. These are both submersions. Fix u ∈ Ep. Since ε̂ is a

diffeomorphism, its derivative at u is a bijection TuE → Tε̂(u)(M × L).

Differentiating the equation π = pr1 ◦ε̂, we see that Dπ(u) is the

composition

Dπ(u) = D pr1(ε̂(u)) ◦Dε̂(u),

and thus is surjective. Since u was an arbitrary point of Ep, this shows

that p is a regular value of π, and since p was arbitrary, we see that π

is submersion. The Implicit Function Theorem 6.10 then tells us that

each fibre is naturally an embedded submanifold of E. Finally, ε̂ maps

Ep diffeomorphically onto the embedded submanifold {p}×L of U ×L,

which is itself diffeomorphic to L via pr2.

Remark 16.5. Suppose (W, ε) is a bundle chart on E. Let (U, x) and

(V, y) be (manifold) charts on M and L respectively with W ⊂ U .

Then (x ◦ π, y ◦ ε) is a manifold chart on an open set in E which is

compatible with the given smooth structure on E.

It is often useful to work backwards. Suppose we begin with a set

E and a surjective map π : E → M , where M is a smooth manifold.
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Suppose in addition we are given another smooth manifold L and an

open cover {Ua | a ∈ A} of M , together with a collection of bijections

ε̂a : π−1(Ua)→ Ua × L

such that pr1 ◦ε̂a = π. We can then attempt to define a smooth

structure by declaring that charts on E are of the form (x ◦ π, y ◦ εa),

where x is a chart on M defined on an open subset of Ua, and y is

some chart on L. Of course, now there is something to check. By

Proposition 1.17, if one can verify that the transition functions are

diffeomorphisms, this will endow E with a smooth manifold structure

in such a way that the (Ua, εa) become a fibre bundle atlas.

Definition 16.6. Suppose we have two fibre bundles

L1 → E
π1−→M, L2 → F

π2−→ N

such that L1 ⊂ L2, E ⊂ F and M ⊂ N are all embedded submani-

folds. We say that E is a subbundle of F if π2|E = π1, that is

Ep ⊂ Fp, ∀ p ∈M.

Example 16.7. If L → E
π−→ M is any fibre bundle and ε̂ : π−1(U) →

U × L is a local trivialisation, then we can consider L → π−1(U)
π−→ U

as a fibre bundle in its own right. This fibre bundle is trivial and is a

subbundle of E. As a result we often say that E is trivial over U if

there exists a local trivialisation with domain π−1(U).

Suppose L → E
π−→ M is a fibre bundle and {(Ua, εa) | a ∈ A} is a

bundle atlas. If Ua ∩ Ub 6= ∅ then for each p ∈ Ua ∩ Ub, the fibre parts

εa and εb restrict to define diffeomorphisms εa|p, εb|p : Ep → L. Thus

there is a well-defined map

εab : Ua ∩ Ub → Diff(L), p 7→ εa|p ◦ ε−1
b|p (16.1)

We usually call εab the transition function from the bundle chart Warning: This is a slightly different

meaning of the word “transition

function” than was used in Definition
1.10.

εa to the bundle chart εb, and refer to the collection {εab} of all tran-

sitions functions arising from the bundle atlas as the transition func-

tions of the bundle atlas. By definition one has

εab(p) ◦ εb|p = εa|p (16.2)

as maps Ep → L. If Ua ∩ Ub ∩ Uc 6= ∅ then the following cocycle

condition is automatically satisfied: The name “cocycle” comes from Čech
cohomology. This is not important
here.εac(p) = εab(p) ◦ εbc(p), ∀ p ∈ Ua ∩ Ub ∩ Uc.

The composition on the right-hand side occurs in Diff(L). In particu-

lar,

εab(p)
−1 = εba(p).

As remarked at the beginning of the lecture, in this level of gener-

ality fibre bundles are not particularly useful in differential geometry.

One way to understand this is the following: the transition functions
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(16.1) take values in the infinite-dimensional manifold Diff(L). This

space is simply “too large” to work with. We therefore seek a way to

cut down the possible options for the transition functions, and for this,

we introduce a Lie group into the mix.

Suppose σ is an effective action of a Lie group G on L. Then the

homomorphism g 7→ σg is an injective map G→ Diff(L), and hence we

can regard G as a subgroup of Diff(L).

Definition 16.8. Suppose L → E
π−→ M is a fibre bundle and σ is

an effective action of G on L. A bundle atlas {(Ua, εa) | a ∈ A} is

said to be a (G, σ)-bundle atlas if the transition functions (16.1) take

values in G, i.e., if Ua ∩ Ub is non-empty then there exists a smooth

map gab : Ua ∩ Ub → G such that

εab(p) = σgab(p). (16.3)

If such an atlas exists, we say that E is a (G, σ)-fibre bundle, and we

call G the structure group of the bundle.

We sometimes refer to a (G, σ)-fibre bundle simply as a G-fibre

bundle, particularly when the action σ is either unimportant or clear

from the context.

Remark 16.9. Definition 16.8 still makes perfect sense if we drop the

assumption that σ is effective. However if σ is not effective then the

maps gab are not uniquely determined – for example, if σ is the trivial

action then any maps gab will work. This is not the end of the world,

but it occasionally annoying, and for this reason we will only work For example, it complicates the
uniqueness part of the Fibre Bundle

Construction Theorem 17.5.
with effective actions when discussing fibre bundles.

Moreover Proposition 12.14 shows that if we start with any (not

necessarily) effective action of G on L, we can convert it into an effec-

tive action without changing its image in Diff(L). Since the definition

of (G, σ)-bundle atlas only uses σ through its image in Diff(L), this

shows that working only with effective actions does not actually in-

volve any loss of generality.

Remark 16.10. Just as with smooth atlases on manifolds, since

(G, σ)-bundle atlases come with compatibility conditions, the union

of two (G, σ)-bundle atlases may not be still be a (G, σ)-bundle atlas.

However we can define an equivalence relation on the set of (G, σ)-

bundle atlases by declaring two atlases to be equivalent if their union

is another (G, σ)-bundle atlas. We then define a (G, σ)-bundle struc-

ture to be an equivalence class. Alternatively, a (G, σ)-bundle struc-

ture can be thought of as a maximal (G, σ)-bundle atlas. (Compare

Remark 1.12). In practice however, just as with smooth atlases versus

smooth structures on manifolds, the distinction is usually unimpor-

tant.

Remark 16.11. A given fibre bundle L→ E
π−→M may have structure

group G for many different Lie groups G (and thus we should really

say “a structure group” rather than “the structure group”). It is often

advantageous to make the structure group as small as possible: if E
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has structure group G and H ⊂ G is a Lie subgroup, then sometimes

it is possible to find a (G, σ)-bundle atlas such that each transition

function εab takes image in {σh | h ∈ H} ⊂ Diff(L). Then this (G, σ)-

bundle atlas is actually an (H,σ|H)-bundle atlas, and we say that we

have reduced the structure group to H. A concrete example of

this awaits you on Problem Sheet G.

Passing from general fibre bundles to G-fibre bundles thus replaces

the infinite-dimensional group Diff(L) with the finite-dimensional

group G. This is already a major improvement over a general fibre

bundle, but it is still not enough. There are two special types of G-

fibre bundles that are of particular importance in differential geometry,

and we introduce them now.

These two special types of fibre bundles come from the two “canoni-

cal” choices of Lie group actions we have met so far:

(i) If V is a vector space, then there is a canonical representation of

GL(V ) on V , cf. part (iv) of Examples 12.13.

(ii) If G is a Lie group, then G acts naturally on itself via left transla-

tion.

Option (i) gives rise to vector bundles, and option (ii) gives rise to

principal bundles.

Definition 16.12. Let M be a smooth manifold. A vector bundle

over M is a GL(V )-fibre bundle V → E
π−→ M , where V is a vector

space and GL(V ) acts on V via the canonical representation. We say

that E has rank l if dimV = l.

Definition 16.13. Let M be a smooth manifold and G a Lie group.

A G-principal bundle over M is a G-fibre bundle G → P
π−→ M ,

where G acts on itself via left translation.

In contrast to other fibre bundles, principal bundles are usually

written with the letters P and Q.

Although it is not obvious from the definitions, the theories of

vector bundles and principal bundles are essentially analogous, and it

is largely a matter of taste whether one primarily works with vector

bundles or principal bundles. Roughly speaking: principal bundles

are slightly more general, whereas vector bundles are slightly easier to

understand. We will return to this at the end of Lecture 18.

Our canonical example of a vector bundle is the tangent bundle.

Example 16.14. Let M be a smooth manifold. Then the tangent

bundle π : TM → M is a vector bundle of rank m over M . It is clear

that the fibres TpM are vector spaces, so we need only check that the

transition functions are linear. Let {(Ua, xa) | a ∈ A} denote a smooth

atlas on M . Define

ε̂a : π−1(Ua)→ Ua × Rm, ε̂a(p, ξ) =
(
p, (dxia)p(ξ)ei

)
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With our new notation, the corresponding chart x̃a on TM con-

structed in the proof of Theorem 5.6 is given by

x̃a = (xa ◦ π, εa)

which is compatible with the first paragraph of Remark 16.5. More-

over if Ua ∩ Ub 6= ∅ then by (5.1) we have

εab(p) = D(xa ◦ x−1
b )(xb(p)),

which lies in GL(m) ⊂ Diff(Rm). A similar argument shows that the

cotangent bundle T ∗M is another vector bundle of rank m over M .

We have also already met many principal bundles in this course, via

the Quotient Manifold Theorem 13.6, although at the moment this is

not easy to deduce directly from the definition. We will come back to

this at the end of the lecture.

Suppose V → E
π−→ M is a fibre bundle with fibre a vector space.

What does it mean to say that E is a vector bundle? The next result

clarifies this.

Proposition 16.15. Let π : E → M be a fibre bundle with fibre a

vector space V . Then E is a vector bundle if and only if it is possible

to endow each fibre Ep with a vector space structure and find a bun-

dle atlas {(Ua, εa)} with the property that for any p ∈ Ua the map

εa|p : Ep → V is a vector space isomorphism.

Proof. Sufficiency is clear, for if (Ua, εa) and (Ub, εb) are two overlap-

ping bundle charts as in the statement then

εab(p) = εa|p ◦ ε−1
b|p

is the composition of linear maps, and hence is linear. Conversely if

V → E
π−→ M is a vector bundle of rank l then Problem B.1 im-

plies that each fibre Ep admits the structure of a vector space, and

moreover that this vector space structure has the property that each

εa|p : Ep → V is a vector space isomorphism.

Proposition 16.15 allows us to make the following alternative defini-

tion of a vector bundle.

Definition 16.16. Let π : E → M be a surjective smooth map

between two smooth manifolds, and set Ep := π−1(p). We say that E

is a vector bundle of rank n if each Ep admits the structure of an

n-dimensional vector space, and any p ∈ M has a neighbourhood U

together with a smooth map ε : π−1(U)→ Rn such that:

(i) (π, ε) : π−1(U)→ U × Rn is a diffeomorphism,

(ii) if εq := ε|Eq then εq : Eq → Rn is a vector space isomorphism for all

q ∈ U .

We will call such a map ε a vector bundle chart, and the collection

of such charts is called a vector bundle atlas.
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Here is the analogous statement for principal bundles.

Proposition 16.17. Let G → P
π−→ M be a fibre bundle with fibre

G. Then P is a principal bundle if and only if there exists a smooth

fibre preserving free right action τ on P , together with a bundle atlas Here by fibre preserving we mean that
τg(Pp) ⊂ Pp, i.e. π ◦ τg = π.{(Ua, εa)} such that each map εa is (τ, r)-equivariant.

The fact that τ is a right action is because in Definition 16.12 we

chose the convention that G acts on itself by left translations.

Proof. Suppose such an action τ exists. Since the action τ is fibre

preserving, equivariance also holds in the fibres, that is,

εa|p ◦ τg = rg ◦ εa|p (16.4)

for all g ∈ G and p ∈ Ua. Our goal is to show that the map

εab : Ua ∩ Ub → Diff(G)

is actually of the form

εab(p) = lgab(p),

for gab : Ua ∩ Ub → G a smooth function. Define

gab(p) := εa|p ◦ ε−1
b|p(e).

This is the composition of smooth maps and hence is smooth. More-

over it depends smoothly on p since εa and εb are smooth. Now take

an arbitrary element h ∈ G. We compute

εab(p)(h) = εa|p ◦ ε−1
b|p(h)

= εa|p ◦ ε−1
b|p ◦ rh(e)

= εa|p ◦ τh ◦ ε−1
b|p(e)

= rh ◦ εa|p ◦ ε−1
b|p(e)

= rh(gab(p))

= lgab(p)(h).

For the converse, suppose {(Ua, εa) | a ∈ A} is a (G, l)-bundle atlas.

We define a map

τ : G× P → P

by declaring that

τg(u) := ε−1
a|p ◦ rg ◦ εa|p(u)

where a ∈ A is any element of A such that π(u) ∈ Ua. This is well

defined, since if π(u) ∈ Ua ∩ Ub then

ε−1
b|p ◦ rg ◦ εb|p(u) = ε−1

a|p ◦ εab(p) ◦ rgεb|p(u)

= ε−1
a|p ◦ lgab(p) ◦ rg ◦ εb|p(u)

= ε−1
a|p ◦ rg ◦ lgab(p) ◦ εb|p(u)

= ε−1
a|p ◦ rg ◦ εa|p(u),

where the last line used (16.2). Now that we know τ is well defined, it

is immediate that τ is a smooth fibre preserving free right action of G

on P . Finally (16.4) holds by definition.
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In fact, we can further improve Proposition 16.17.

Proposition 16.18. Let π : P → M be a surjective submersion

and let G be a Lie group. Then P is a principal G bundle if and only

if there exists a smooth free right action τ of G on P which is fibre i.e. Pπ(u) = orbτ (u) for all u ∈ P .

preserving and transitive on the fibres.

Proof. Suppose P is a principal G bundle. By Proposition 16.17 this

means there exists a bundle atlas {(Ua, εa)} such that each εa is (τ, r)-

equivariant. Fix p ∈ M and let u1, u2 ∈ Pp. Suppose p ∈ Ua. Let

gi := (εa)p(ui) for i = 1, 2. Then by definition

ε̂a
(
τg−1

1 g2
(u1)

)
= (p, g2) = ε̂a(u2).

Since ε̂a is a diffeomorphism, we have u2 = τg−1
1 g2

(u1). This shows

that τ is transitive on the fibres.

Now suppose that τ is a smooth free fibre preserving action of G on

P which is transitive on the fibres. Since π is a surjective submersion,

by Proposition 6.13, for each p ∈ M there is a neighbourhood U of p

and a smooth local section ψ : U → P of π. Now consider the map

ϕ : U ×G→ π−1(U), ϕ(q, g) := τg(ψ(q)).

By hypothesis the map ϕ is a smooth injection. Under the splitting

T(q,g)(U × G) ∼= TqU ⊕ TgG from Problem C.1 the derivative of ϕ is

given by

Dϕ(q, g) = Dτg(ψ(q)) ◦Dψ(q) +Dτψ(q)(g).

By Corollary 13.2 this map has maximal rank dimM + dimG at

(q, g), and hence by the Inverse Function Theorem 5.10, the map ϕ

is a diffeomorphism. Thus we can write ϕ−1 = (π, ε) for a uniquely

determined smooth function ε : π−1(U) → G. This will form our

desired principal bundle chart once we check (τ, r)-equivariance. Let

u ∈ π−1(U) and assume that π(u) = q ∈ U . Then

(π, ε)(τg(u)) =
(
q, ε(τg(u))

)
,

and hence

τg(u) = ϕ
(
q, ε(τg(u)

)
(16.5)

In particular for g = e we get

u = τe(u) = ϕ
(
q, ε(u)

)
. (16.6)

Then for g ∈ G we compute:

ϕ(q, rg(ε(u)) = τε(u)g(ψ(q))

= τg ◦ τε(u)(ψ(q))

= τg
(
ϕ(q, ε(u)

)
= τg(u)

= ϕ
(
q, ε(τg(u)

)
,

where the last two lines used (16.6) and (16.5) respectively. Since ϕ is

a diffeomorphism this shows that rg(ε(u)) = ε(τg(u)).



9

Remark 16.19. An action τ satisfying (either) of the hypotheses of

Proposition 16.18 is automatically proper. Indeed, the assertion that

orbτ (u) = Pπ(u) for all u ∈ P implies that M is topologically the orbit

space P/G. Problem G.2 then implies that τ is automatically proper.

Propositions 16.17 and 16.18 allow us to make the following alterna-

tive definition of a principal bundle, which is analogous to Definition

16.16.

Definition 16.20. Let π : P → M be a surjective smooth submersion,

and set Pp := π−1(p). We say that P is a principal G-bundle if

there exists a smooth free right action τ on P which is both fibre

preserving and transitive on the fibres. A bundle chart (U, ε) which is

(τ, r)-equivariant is called a principal bundle chart – Proposition

16.17 shows that we can find a bundle atlas of such charts, which we

call a principal bundle atlas.

Definition 16.20 and Remark 16.19 allow us to use Quotient Mani-

fold Theorem 13.6 to produce principal bundles.

Corollary 16.21. Let τ be a proper free action of a Lie group G on

a smooth manifold P . Then ρ : P → P/G is a principal G bundle.

As a special case of Corollary 16.21 we have:

Corollary 16.22. Let M ∼= G/H be a homogeneous space. Then M

can be seen as the base space of a principal H-bundle H → G
π−→M .



Will J. Merry

LECTURE 17

The Fibre Bundle Construction Theorem

In this lecture we discuss morphisms between G-fibre bundles, give a

recipe for constructing such bundles, and show they are determined up

to isomorphism by its transition functions. We conclude by showing

how a vector bundle canonically determines a principal bundle. Next

lecture we will investigate the converse direction: producing vector

bundles from principal bundles.

Definitions 17.1. Let

L1 → E
π1−→M, and L2 → F

π2−→ N

be two fibre bundles. A fibre bundle morphism is a pair (ϕ,Φ) of

smooth maps

ϕ : M → N, Φ: E → F.

such that the following commutes:

E F

M N

Φ

π1 π2

ϕ

We also say that Φ is a fibre bundle morphism along ϕ. If Φp : Ep →
Fϕ(p) is a diffeomorphism for each p ∈ M then we call Φ a fibre bun-

dle isomorphism along ϕ.

If (ϕ,Φ) is a fibre bundle morphism then

Φp := Φ|Ep : Ep → Fϕ(p)

is a smooth map for each p ∈ M . If Φp : Ep → Fϕ(p) is a diffeomor-

phism for each p ∈ M then we call Φ a fibre bundle isomorphism

along ϕ. Since Ep ∼= L1 and Fϕ(p)
∼= L2, we see that a fibre bundle

isomorphism along ϕ can only exist when L1
∼= L2.

Of particular interest is the case where M = N and ϕ = id.

Definition 17.2. Let L1 → E
π1−→M and L2 → F

π2−→M be two fibre

bundles over the same base space M . A smooth map Φ: E → F is

said to be fibre bundle homomorphism if (id,Φ) is a fibre bundle

morphism. If in addition Φ is a fibre bundle isomorphism along id,

then we call Φ a fibre bundle isomorphism, and we say that E and

F are isomorphic fibre bundles.

So much for general fibre bundles. The notion of morphisms be-

tween G-fibre bundles is rather messier to define, and for simplicity we

focus only on isomorphisms. Let

L→ E
π1−→M, and L→ F

π2−→ N

Last modified: July 17, 2021.
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be two (G, σ)-fibre bundles. Let {(Ua, εa) | a ∈ A} be a (G, σ)-bundle

atlas for E and let {(Vb, γb) | b ∈ B} be a (G, σ)-bundle atlas for

F . Let ϕ : M → N be a smooth map and let Φ: E → F be a fibre

bundle isomorphism along ϕ. If a ∈ A and b ∈ B are such that

Ua ∩ ϕ−1(Vb) 6= ∅, then for p ∈ Ua ∩ ϕ−1(Vb) we can consider the

composition

L
ε−1
a|p−−→ Ep

Φp−−→ Fϕ(p)

γb|ϕ(p)−−−−→ L

Denote this composition by f ba(p). Thus f ba(p) ∈ Diff(L) and we can

regard f ba as a map

f ba : Ua ∩ ϕ−1(Vb)→ Diff(L), p 7→ f ba(p). (17.1)

Now recall that the reason we introduced (G, σ)-fibre bundles was

to “cut down” the possible values the transition functions from the

infinite-dimensional space Diff(L) to a finite-dimensional subgroup

{σg | g ∈ G}. It therefore stands to reason that an isomorphism

between such bundles along ϕ should also respect this restriction – in

other words, the functions f ba from (17.1) should also take values in

{σg | g ∈ G}.

Here is the formal definition.

Definition 17.3. Let σ be a smooth effective action of a Lie group G

on a smooth manifold L. Assume we are given two fibre bundles

L→ E
π1−→M, and L→ F

π2−→ N

together with a (G, σ)-bundle atlas {(Ua, εa) | a ∈ A} on E and a

(G, σ)-bundle atlas {(Vb, γb) | b ∈ B} on F . Let ϕ : M → N be a

smooth map and let Φ: E → F be a fibre bundle isomorphism along

ϕ. We say that Φ is a (G, σ)-fibre bundle isomorphism along ϕ if

for each a ∈ A and b ∈ B such that Ua ∩ ϕ−1(Vb) 6= ∅, there exists a

smooth map

hba : Ua ∩ ϕ−1(Vb)→ G

such that if f ba is defined as in (17.1) then

fab (p) = σhba(p).

As before, when M = N and ϕ = id then we call Φ a (G, σ)-fibre

bundle isomorphism, and we say that E and F are isomorphic

(G, σ)-fibre bundles.

Remark 17.4. As a fun exercise, try and correctly write down the def-

inition of a morphism in the most general setting where one has two

fibre bundles with different fibres, different Lie groups, and different

actions.

We now give a recipe for constructing fibre bundles starting from

the transition functions.

Theorem 17.5 (The Fibre Bundle Construction Theorem). Let

{Ua | a ∈ A} be an open covering of a manifold M . Let G be a Lie
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group. Suppose for each a, b ∈ A such that Ua ∩ Ub 6= ∅, we are given

a smooth map gab : Ua ∩ Ub → G such that the following cocycle

conditions are satisfied:gac(p) = gab(p)gbc(p), ∀ p ∈ Ua ∩ Ub ∩ Uc,
gaa(p) = e, ∀ p ∈ Ua, ∀ a ∈ A.

(17.2)

Suppose in addition we are given a smooth effective action σ of G on

a smooth manifold L. Then there exists a fibre bundle L → E
π−→ M ,

which admits a (G, σ)-bundle atlas {(Ua, εa) | a ∈ A} such that the

transition functions εab are given by

εab(p) = σgab(p).

As you might expect from a theorem with such complicated hy-

potheses (compare the Proposition 1.17), the proof is basically trivial

– most of the work is in formulating the hypotheses correctly!

Proof. Let

E :=

(⊔
a∈A

(Ua × L)

)/
∼,

where we identify (p, u) ∈ Ua × L with (q, v) ∈ Ub × L if and only if

p = q and

u = σgab(p)(v).

Let

ρ :
⊔
a∈A

(Ua × L)→ E

denote the quotient map, and endow E with the quotient topology.

Let π : E →M denote the unique map so that⊔
a∈A(Ua × L)

⊔
a∈A Ua

E M

pr1

ρ “ id ”

π

Then π : E → M is continuous by definition of the quotient topol-

ogy. For each a ∈ A, the restriction of ρ to Ua × L onto its image

in E is a homeomorphism. Its inverse is of the form (π, εa), where

εa : π−1(Ua)→ L. This is our desired bundle atlas on E: we first make

E into a smooth manifold using the procedure outlined in the second

half of Remark 16.5 – the fact that this gives a well-defined smooth

structure follows from (17.2). It is then immediate from the defini-

tion that the transition functions of this bundle atlas are given by the

maps εab. This completes the proof.

Example 17.6. Take L = R, and identify GL(R) = R \ {0}. We take

M = S1 ⊂ C. Let U1 = S1 \ {i} and U2 := S1 \ {−i}. By the Fibre

Bundle Construction Theorem 17.5 a smooth map g12 : U1 ∩ U2 →
R \ {0} determines a vector bundle of rank 1 over M . If we set

g21(z) :=

1, <(z) > 0,

−1, <(z) < 0,
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then the vector bundle so obtained is called the Möbius bundle. The Möbius bundle is a Möbius band

of infinite width.On Problem Sheet G you will show that there are exactly two rank 1

vector bundles over S1 (up to isomorphism): the trivial bundle S1 × R
and the Möbius bundle.

The next result clarifies the relation between the isomorphism class

of a vector or principal bundle and its transition functions.

Proposition 17.7. Let σ be an effective action of a Lie group G on a

smooth manifold L. Assume we are given two fibre bundles

L→ E
π1−→M, and L→ F

π2−→M

Let {Ua | a ∈ A} be an open cover of M such that both E and F This can always be achieved by taking

intersections.admit (G, σ)-bundle atlases over the Ua. Let

g1
ab : Ua ∩ Ub → G, and g2

ab : Ua ∩ Ub → G

denote the transition functions of E and F with respect to these bun-

dle atlases. Then E and F are isomorphic as (G, σ)-fibre bundles if

and only if there exists a family fa : Ua → G of smooth functions such

that

fa(p) ◦ g1
ab(p) = g2

ab(p) ◦ fb(p), ∀ p ∈ Ua ∩ Ub, ∀ a, b ∈ A.

Similarly to the Fibre Bundle Construction Theorem, the most

difficult part of Proposition 17.7 is formulating the correct hypotheses.

The proof is left to you on Problem Sheet G.

Corollary 17.8. The (G, σ)-fibre bundle constructed in the Fibre

Bundle Construction Theorem 17.5 is unique up to (G, σ)-fibre bundle

isomorphism.

We now specialise the preceding definitions to vector and principal

bundles. The definitions are not quite special cases of what we have

already done (since in Definition 17.3 we only looked at (G, σ)-fibre

bundle isomorphisms along maps).

Definition 17.9. Let (ϕ,Φ) be a fibre bundle morphism between two

vector bundles π1 : E → M and π2 : F → N . We say that (ϕ,Φ)

is a vector bundle morphism if Φp : Ep → Fϕ(p) is a linear map

for each p ∈ M . When ϕ is fixed, we also say that Φ is a vector

bundle morphism along ϕ if (ϕ,Φ) is a vector bundle morphism.

If Φp maps each fibre Ep isomorphically onto Fϕ(p) then Φ is called a

vector bundle isomorphism along ϕ.

Example 17.10. Let ϕ : M → N be a smooth map. Then Dϕ : TM →
TN is a vector bundle morphism along ϕ.

Definition 17.11. Let π1 : E → M and π2 : F → M be two vector

bundles over the same base space M . A smooth map Φ: E → F is

said to be vector bundle homomorphism if (id,Φ) is a vector bun-

dle morphism. If Φ is in addition a diffeomorphism we say that Φ is

a vector bundle isomorphism, and that E and F are isomorphic

vector bundles.
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Remark 17.12. A vector bundle homomorphism is a vector bundle

isomorphism if and only if it is a diffeomorphism. This is not true for

vector bundle morphisms along a map. For instance, if M is a mani-

fold and p ∈ M then (thinking of {p} as a zero-dimensional manifold)

we have a smooth map ιp : {p} ↪→ M given by inclusion. If E is any

vector bundle over M then the inclusion map Ep ↪→ E is a vector

bundle isomorphism along ιp, but of course it is not a diffeomorphism.

The definition of morphisms for principal bundles is analogous.

Definition 17.13. Let (ϕ,Φ) be a fibre bundle morphism between

two principal G-bundles π1 : P → M and π2 : Q → N . Let τ1 and

τ2 denote the associated right actions on P and Q respectively. We

say that (ϕ,Φ) is a principal bundle morphism if Φ is (τ1, τ2)-

equivariant. When ϕ is fixed, we also say that Φ is a principal bun-

dle morphism along ϕ if (ϕ,Φ) is a principal bundle morphism. If

Φ is in addition a diffeomorphism then we say Φ is a principal bun-

dle isomorphism along ϕ.

Whilst the definition of principal bundle morphisms looks superfi-

cially similar to that of vector bundle morphisms, there is already a

major difference between vector and principal bundles.

Lemma 17.14. Let π1 : P → M and π2 : Q → N be two G-principal

bundles. Suppose Φ: P → Q is a principal bundle morphism along

a diffeomorphism ϕ : M → N . Then Φ is automatically a diffeomor-

phism, and hence a principal bundle isomorphism along ϕ.

As Remark 17.12 shows, Lemma 17.14 is not true for vector bundle

morphisms! The proof of Lemma 17.14 is on Problem Sheet G.

Definition 17.15. Let π1 : P → M and π2 : Q → M be two principal

G-bundles over the same base space M . A diffeomorphism Φ: P → Q

is said to be principal bundle isomorphism if (id,Φ) is a prin-

cipal bundle morphism. If such a Φ exists we say that P and Q are

isomorphic principal G-bundles.

Note there is no point mimicking Definition 17.11 by first defining

a “principal bundle homomorphism”, and then declaring that a prin-

cipal bundle isomorphism is a principal bundle homomorphism which

is in addition a diffeomorphism. Indeed, any principal bundle homo-

morphism is automatically an isomorphism by Lemma 17.14, since the

identity is a diffeomorphism.

Remark 17.16. If π : P →M is a principal bundle and Φ: P → P is a

principal bundle isomorphism from P to itself then we call Φ a gauge

transformation. The name comes from physics. We will come back

to the study of gauge transformations extensively next semester.

Having defined morphisms, we can now define vector and principal

subbundles.

Definition 17.17. Let π1 : E → M and π2 : F → M are two vector

bundles over the same manifold such that E ⊂ F is an embedded sub-

manifold. We say that E is a vector subbundle of F if the inclusion

E ↪→ F is a vector bundle homomorphism.
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Example 17.18. If ∆ is a distribution on M then one can think of ∆

as a vector subbundle of TM .

The notion of principal subbundles is slightly subtler, because we

also want to allow for a Lie subgroup. Suppose ψ : G → H is a Lie

group homomorphism and τ is a smooth action of H on a space M .

Define a new action τψ of G on M by Part (i) of Examples 12.13 is a special
case of this.

τψg := τψ(g), g ∈ G.

We now extend the notion of a principal bundle morphism for different

Lie groups.

Definition 17.19. Suppose G and H are two Lie groups. Let π1 : P →
M be a principal G-bundle and let π2 : Q → N be a principal H-

bundle. Suppose ψ : G → H is a Lie group homomorphism. A prin-

cipal bundle morphism from P to Q with respect to ψ consists

of a pair of smooth maps ϕ : M → N and Φ: P → Q such that

π2 ◦ Φ = ϕ ◦ π1 and such that Φ is (τ1, τ
ψ
2 )-equivariant. If M = N and Warning: In this case the analogue

of Lemma 17.14 is not true, and so Φ
does not need to be a principal bundle

isomorphism with respect to ψ.

ϕ = id then we call Φ a principal bundle homomorphism with

respect to ψ.

Remark 17.20. Definition 17.19 is a special case of the more general

setup you were invited to guess in Remark 17.4.

Here is the definition of a principal subbundle . Principal subbundles will play no
role in Differential Geometry I (apart

from in Problem G.10). However they

will be very important in Differential
Geometry II.

Definition 17.21. Let G be a Lie group and suppose H ⊂ G is

a Lie subgroup. Suppose π1 : P → M is a principal H-bundle and

π2 : Q → M is a principal G-bundle such that P ⊂ Q is a weakly

embedded submanifold. We say that P is a principal H-subbundle

of Q if the inclusion P ↪→ Q is a principal bundle homomorphism with

respect to the inclusion H ↪→ G.

The Fibre Bundle Construction Theorem 17.5 allows us to produce

a principal G-bundle from any G-fibre bundle. Indeed, suppose L →
E

π−→ M is a (G, σ)-fibre bundle. Let {(Ua, εa)} be a (G, σ)-bundle

atlas. This means we can write

εab(p) = σgab(p)

for functions gab : Ua ∩Ub → G. The functions {gab} satisfy the cocycle

condition, and hence by the Fibre Bundle Construction Theorem 17.5,

there exists a principal G-bundle P whose transition functions are

given by left translation by the gab. This principal bundle is unique up

to principal bundle isomorphism by Corollary 17.8, and we give it a

special name:

Definition 17.22. We call P the induced principal bundle of E.

This is a slight abuse of terminology, as P is only unique up to

isomorphism.

We conclude this lecture by giving an explicit construction of P in

the case where E is a vector bundle.
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Definition 17.23. Let V → E
π−→ M be a vector bundle. Fix p ∈ M ,

and let Fr(Ep) denote the set of isomorphisms ` : V → Ep. Since any

two isomorphisms `1, `2 : V → Ep differ by element of GL(V ), i.e.

there exists A ∈ GL(V ) such that `2 = `1 ◦ A. In fact, if we fix our

favourite isomorphism ` then the map GL(V ) → Fr(Ep) given by

A 7→ ` ◦A is a bijection.

One can equivalently regard Fr(Ep) as the set of bases of the vector

space Ep, since for any ` ∈ Fr(Ep) the vectors (`ei) form a basis

of Ep, where ei are the standard basis vectors in V , and conversely

given a basis (vi) there is a uniquely determined linear isomorphism

` : V → Ep such that `ei = vi for each i.

Definition 17.24. We now form the total space

Fr(E) :=
⊔
p∈M

Fr(Ep),

and let Π: Fr(E) → M denote the map that sends Fr(Ep) to p. We

call Fr(E) the frame bundle of E.

Proposition 17.25. Let V → E
π−→ M be a vector bundle. Then

Π: Fr(E) → M is a principal GL(V )-bundle over M . Moreover Fr(E)

is the induced principal bundle of E.

Proof. Let {(Ua, εa) | a ∈ A} denote a vector bundle atlas. For each

p ∈ Ua, ε−1
a|p : V → Ep is a linear isomorphism, and thus ε−1

a|p ∈ Fr(Ep).

Define a map

γa : Π−1(Ua)→ GL(V ),

by declaring that

γa(ε−1
a|p ◦A) = A.

We will show that {(Ua, γa) | a ∈ A} is a GL(V )-principal bundle atlas

on Fr(E). As in the proof of the Fibre Bundle Construction Theorem

17.5, we will simultaneously show that Fr(E) is a smooth manifold and

a principal GL(V )-bundle by computing the transition functions γab.

Fix p ∈ Ua ∩ Ub. Then by definition

γab(p)(A) = γa|p ◦ γ−1
b|p (A)

= γa|p

(
ε−1
b|p ◦A

)
= εab(p) ◦A.

Thus the transition functions of Fr(E) are just left composition by the

transition functions of E. That is,

γab(p) = lεab(p),

where l is left translation in the Lie group GL(V ). This means that

the transition functions of E play the role of the functions gab in

(16.3). Thus Fr(E) is indeed a principal GL(V ) bundle, and by def-

inition Fr(E) is the induced principal bundle of E.

We have shown how to produce a principal bundle from a vector

bundle. Next lecture we will show how to produce (many) vector

bundles from a principal bundle.
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LECTURE 18

Associated Bundles

We begin this lecture by explaining how to build fibre bundles from

principal bundles.

Definition 18.1. Let π : P → M be a principal G-bundle, and let σ

be a smooth effective left action of G on another smooth manifold L.

Define an equivalence relation ∼ on P × L by setting:

(τg(u), q) ∼ (u, σg(q)), u ∈ P, g ∈ G, q ∈ L, (18.1)

Define P ×G L to be the quotient space (P × L)/ ∼. Writing [u, q] for

the equivalence class of (u, q), we define a map

πL : P ×G L→M, [u, q] 7→ π(u).

We call P ×G L an associated bundle of P .

Remark 18.2. The notation πL : P ×G L → M is somewhat am-

biguous, since we really should specify the action we are using. When

confusion is possible, we will occasionally write πL,σ : P×G,σL→M or

πσ : P ×σ L → M instead. Moreover the assumption that σ is effective

is not used anywhere in the proof – it is simply there so as to fit in

with the framework of Definition 16.8. As Remark 16.9 shows, restrict-

ing to effective actions does not actually involve any loss of generality,

and thus assuming it here is harmless.

Theorem 18.3 (The Associated Bundle Theorem). Let π : P → M be

a principal G-bundle, and let σ be a smooth effective action of G on

L.

(i) The associated bundle πL : P ×G L → M is a (G, σ)-fibre bundle

with fibre L, and moreover P is the induced principal bundle of

P ×G L.

(ii) The quotient map ℘ : P × L → P ×G L given by ℘(u, q) := [u, q] is

another principal G-bundle, and the first projection pr1 : P ×L→ P

is a principal bundle morphism along πL:

P × L P

P ×G L M

pr1

℘ π

πL

(iii) For each u ∈ P , the map ψu : L → P ×G L given by q 7→ [u, q] is a

diffeomorphism from L to π−1
L (π(u)).

Proof. We will prove the result in four steps.

1. In this step we define a tentative bundle chart for P ×G L and

prove that the associated local trivialisation is bijective. Suppose

Last modified: July 17, 2021.
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ε : π−1(U) → G is a principal bundle chart over an open set U ⊂ M .

We define a map γ : π−1
L (U)→ L by

γ[u, q] := σε(u)(q).

This is well defined because ε is (τ, r)-equivariant: if [u, q] = [u1, q1]

then there exists g ∈ G such that τg(u1) = u and σg(q) = q1. Then

γ[u, q] = σε(u)(q)

= σε(τg(u1))(q)

= σε(u1)g(q)

= σε(u1) ◦ σg(q)
= σε(u1)(q1)

= γ[u1, q1].

We claim that γ̂ := (πL, γ) : π−1
L (U) → U × L is bijective. To see

this, for each p ∈ U let up ∈ Pp denote the unique element such that

ε(up) = e (this is well defined as εp is a diffeomorphism). Now define

ϕ : U × L→ π−1
L (U) by ϕ(p, q) := [up, q]. We claim that ϕ is an inverse

to γ̂. Indeed,

γ̂ ◦ ϕ(p, q) = (πL, γ)[up, q]

=
(
p, σε(up)(q)

)
= (p, σe(q))

= (p, q).

Going the other way round, if p ∈ U and u ∈ Pp then by equivariance

ε̂
(
τε(u)(up)

)
=
(
p, rε(u)ε(up)

)
= (p, ε(u)e)

= (p, ε(u))

= ε̂(u)

and thus as ε̂ is a diffeomorphism we must have

τε(u)(up) = u. (18.2)

We therefore have for u ∈ Pp that

ϕ ◦ γ̂[u, q] = ϕ(p, σε(u)(q))

=
[
up, σε(u)(q)

]
=
[
τε(u)(up), q

]
= [u, q],

where the last two equalities used (18.1) and (18.2) respectively. Thus

γ̂ is bijective.

2. In this step we prove (i). Let {(Ua, εa) | a ∈ A} be a principal

bundle atlas for P , and for each a ∈ A, let γa : π−1
L (Ua) → L be

defined as in Step 1. We claim that {(Ua, γa)} can serve as a bundle



3

atlas on P ×G L. For this we must investigate the transition functions

γab. We want to show that

γab(p)(q) = σgab(p)(q)

for some smooth functions gab : Ua ∩ Ub → G. This however is immedi-

ate from the previous step:

γab(p)(q) = σεab(p)(q), (18.3)

that is,

gab(p) = εab(p)

This is smooth, and hence as in Remark 16.5, we can endow P ×G L
with a smooth structure by declaring all the maps γ̂a to be diffeomor-

phisms. Then the collection {(Ua, γa)} form a (G, σ)-bundle atlas,

and P ×G L is a (G, σ)-fibre bundle. Moreover by definition P is the

principal bundle induced by P ×G L.

3. We now prove (ii). On the open set π−1(Ua) × L of P × L, the

map ℘ is given by

℘(u, q) = γ̂−1
a

(
π(u), σεa(u)(q)

)
,

This shows that ℘ is smooth. If we differentiate this equation we ob-

tain

D℘(u, q) = Dγ̂−1
a

(
π(u), σεa(u)(q)

)
◦
(
Dπ(u), Dσεa(u)(q)+Dσ

q(εa(u))◦Dεa(u)
)
.

Since γ̂a and σεa(u) are diffeomorphisms, it follows from Proposition

16.4 that ℘ is a submersion. We now define a right action τ̃ of G on

P × L by

τ̃g(u, q) =
(
τg(u), σg−1(q)

)
.

This action is free since τ is. Moreover τ̃ preserves the fibres of ℘:

℘
(
τ̃g(u, q)

)
= ℘

(
τg(u), σg−1(q)

)
=
[
τg(u), σg−1(q)

]
= [u, q]

= ℘(u, q)

by the defining relationship (18.1). Finally τ̃ is transitive on the fibres,

since if

℘(u1, q1) = ℘(u2, q2)

then by (18.1) again there exists g ∈ G such that

τg(u1) = u2, σg(q2) = q1,

and hence

τ̃g(u1, q1) = (u2, q2).

Since P ×G L is a manifold, Problem G.2 implies that τ̃ is proper. It

now follows from Proposition 16.18 that ℘ : P ×L→ P ×GL is another

principal G bundle. This proves (ii). The identity

pr1

(
τg(u), σg−1(q)

)
= τg(u) = τg(pr1(u, q))
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shows that pr1 is a principal G-bundle morphism along πL.

4. It remains to prove (iii). Fix p ∈ M and u ∈ Pp. The map

ψu : L → π−1
L (p) given by q 7→ [u, q] is smooth because ℘ is. Moreover

if p ∈ Ua then near [u, q] a the map

σεa(u)−1 ◦ γa : π−1
L (p)→ L

is a smooth inverse to ψu. Thus ψu is a diffeomorphism. This com-

pletes the proof of part (iii), and hence also the theorem.

Corollary 18.4. Let L → E
π−→ M be a (G, σ)-fibre bundle.

Then there exists a principal bundle P such that E is isomorphic

as a (G, σ)-fibre bundle to the associated bundle P ×G L. Moreover P

is unique up to principal bundle isomorphism.

Proof. Let P denote the principal G-bundle induced by E. Thus

the transition functions of E can be identified with the transition

functions of P . Now consider the new fibre bundle P ×G L. As the

proof of Theorem 18.3 shows, the transition functions of P ×G L

can also be identified with the transition functions of P . Thus E and

P ×G L have the same transition functions, and by Proposition 17.7 it

follows that E and P ×G L are isomorphic as (G, σ)-fibre bundles.

Suppose L = V is a vector space and σ is a linear action. Then

(18.3) shows that the transition functions of P ×G V are linear, and

hence P ×G V is a vector bundle over M . It will be useful later to

have an explicit description of the vector space structure on the fibres.

Fix p ∈ M , v, w ∈ V and c ∈ R. We define addition and scalar

multiplication on π−1
V (p) as

[u, v] + c[u,w] := [u, v + cw],

where u ∈ Pp is any element in the fibre over p and v + cw is ad-

dition and scalar multiplication in the vector space V . This is well

defined, i.e. independent of the choice of u, since if g ∈ G then

[u, v] = [τg(u), σg−1(v)] and [u,w] = [τg(u), σg−1(w)] and then since

σg−1 is linear[
τg(u), σg−1(v) + cσg−1(w)

]
=
[
τg(u), σg−1(c+ vw)

]
= [u, v + cw].

This also shows that the bundle charts γ constructed in the proof of

Theorem 18.3 are vector bundle charts in the sense of Definition 16.16.

Note that the map ψu from part (iii) of Theorem 18.3 satisfies

ψu(v + cw) = [u, v + cw]

= [u, v] + c[u,w]

= ψu(v) + cψu(w),

and hence ψu is linear. We have thus proved:

Corollary 18.5. Let π : P → M be a principal G-bundle. Suppose A faithful representation is simply
another word for an effective linear

action, cf. part (iii) of Examples

12.13.

σ is a faithful representation of G on a vector space V . Then the

associated bundle P ×G V is a vector bundle over M and the map ψu

from part (iii) of Theorem 18.3 is a linear isomorphism.
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Example 18.6. Let V → E
π−→ M be a vector bundle, and let

Π: Fr(E) → M denote the frame bundle. The canonical represen-

tation of GL(V ) on V produces a new vector bundle

ΠV : Fr(E)×GL(V ) V →M

It follows from Corollary 18.4 that this vector bundle is isomorphic to

E. If p ∈ M then a bundle chart (U, ε) about p provides an explicit

isomorphism Ep ∼= Π−1
V (p) via:

Ep V Π−1
V (p)

εp
ψ
ε
−1
p

This may seem a bit silly: starting from a vector bundle E, we

constructed its frame bundle, and then used the Associated Bundle Strictly speaking, all we have done

is produced a new bundle which is

isomorphic to E as a vector bundle.
Theorem to produce. . .E again. But this is missing the point: the real

power of Corollary 18.5 is that we are free to choose any representa-

tion of GL(V ).

Definition 18.7. Let V → E
π−→ M be a vector bundle. Let

Π: Fr(E) → M denote the frame bundle of E. The group GL(V )

acts on the dual space V ∗ = Hom(V,R) by

λ 7→ λ ◦A−1 (18.4)

for A ∈ GL(V ) and λ ∈ V ∗. This gives an associated vector bundle

ΠV ∗ : Fr(E) ×GL(V ) V
∗ → M . We call this vector bundle the dual

bundle of E, and write it as E∗.

One can also give a very explicit construction of E∗. Namely, the

total space E∗ is given as the union

E∗ :=
⊔
p∈M

E∗p (18.5)

where E∗p = Hom(Ep,R) is the dual vector space to Ep. A bundle

chart (U, ε) on E gives rise to a bundle chart (U, ε∗) on E∗ via

ε∗p(λ)(v) := λ(ε−1
p (v)), λ ∈ E∗p , v ∈ V

together with an explicit isomorphism

E∗p V ∗ Π−1
V ∗(p)

ε∗p
ψ(ε∗p)−1

Example 18.8. The cotangent bundle is the dual bundle to the tan-

gent bundle.

The explicit construction of the dual bundle E∗ in (18.5) is only

isomorphic to the dual bundle from Definition 18.7. Nevertheless, we

will suppress this in the discussion that follows, and regard them as

being “the same”. It is important to understand why this is harmless.

In general it is not alright to simply work with vector bundles

up to isomorphism – at least, if one did then the whole dual bundle See Problem Sheet I.

construction would be pointless, since any vector bundle is isomorphic

to its dual bundle.
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However there is a stronger notion than isomorphism: canonical Also called natural isomorphism.

isomorphism. Roughly speaking, to say two mathematical objects

are canonically isomorphic is to say that the isomorphism does not

involve making any choices. This really is a stronger property. Indeed,

for any finite-dimensional vector space V , you hopefully remember

from linear algebra that:

V ∼= V ∗ (non-canonical isomorphism)

V ∼= V ∗∗ (canonical isomorphism) (18.6)

The precise mathematical definition of canonical isomorphism will

appear in the bonus section of the next lecture. For now it is only

important for you to understand that:

If two mathematical objects are canonically isomorphic, it is

harmless to regard them as actually being the same object;

whereas when the isomorphism is non-canonical then regarding

them as the same object “loses” information.

Returning to the situation at hand: the construction of the dual

bundle in (18.5) is canonically isomorphic to Definition 18.7. This

is not too hard to prove directly (namely, one just checks that the

obvious isomorphism between the two doesn’t depend on choices).

The general statement (which covers all possible cases of interest)

is given in Theorem 19.64 next lecture. For all subsequent vector

bundle constructions, we will suppress canonical isomorphisms from

our discussion without further comment.

Definition 18.9. Let G → P
π1−→ M and H → Q

π2−→ M be principal

bundles over the same base manifold M with corresponding right

actions τ1 and τ2. Let Note that the total space of P ? Q is

not the product space P ×Q.

P ? Q :=
⊔
p∈M

Pp ×Qp.

Define a right action τ of G×H on P ? Q by

τ(g,h)(u1, u2) :=
(
τ1|g(u1), τ2|h(u2)

)
.

This is a free proper right action of G ×H on P ? Q whose orbits are

exactly the fibres. Thus Remark 16.5 and Proposition 16.18 tells us

that P ?Q is a principal G×H bundle over M whose fibre over p ∈M
is Pp ×Qp. We call it the product principal bundle.

Let us apply this to vector bundles: if V → E
π1−→ M and W →

F
π2−→ M are two vector bundles over the same manifold M , then

Fr(E) is a principal GL(V )-bundle over M and Fr(F ) is a principal

GL(W )-bundle over M . Thus Fr(E) ? Fr(F ) is a principal GL(V ) ×
GL(W ) bundle over M .

Definition 18.10. The group GL(V )×GL(W ) acts on V ×W by the Warning: As vector spaces, the

direct sum V ⊕W is the same thing
as the product V ×W , and we often

use the notation interchangeably. For

vector bundles, we always use the
notation ⊕ notation. This is because

E × F is used to denote a different
bundle; see Problem H.5.

canonical representation, and thus we can form the vector bundle(
Fr(E) ? Fr(F )

)
×GL(V )×GL(W ) (V ⊕W )
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over M . This is a vector bundle with fibre V ⊕W and we denote it by

E ⊕ F and call it the direct sum of E and F .

The direct sum bundle can also be explicitly constructed as

E ⊕ F :=
⊔
p∈M

Ep ⊕ Fp.

This discussion can be summed up by the following:

Metatheorem. Anything you can do with vector spaces, you can

also do with vector bundles.

The “proof” of the Metatheorem is Corollary 18.5. Or more ac-

curately: the statement of Corollary 18.5 is one way of turning the In the bonus section of the next

lecture, we will present an entirely
different way of formulating and

proving the Metatheorem, using

category-theoretic tools instead of
principal bundles.

Metatheorem into an precise mathematical statement.

In the next lecture, we will see three further applications of the

Metatheorem:

(i) If V and W are vector spaces, then the set Hom(V,W ) of linear

maps from V to W is a vector space; thus if E and F are vector

bundles then there is a well-defined homomorphism bundle

Hom(E,F ).

(ii) If V and W are vector spaces, their tensor product V ⊗W is an-

other vector space; thus if E and F are vector bundles then there is

a well-defined tensor bundle E ⊗ F .

(iii) If V is a vector space, its exterior algebra
∧
V is another vector

space; thus if E is a vector vector there is a well-defined exterior

algebra bundle
∧
E.

We conclude this lecture by returning to the difference between

principal bundles and vector bundles. Corollaries 18.4 and 18.5 tell us

that studying vector bundles over a given manifold M is essentially This can be formulated in a precise
categorical way.the same thing as studying principal G-bundles over M for G a matrix

Lie group. However not all Lie groups are matrix Lie groups, and thus

principal bundles are more general than vector bundles.



Will J. Merry

LECTURE 19

Tensor and Exterior Algebras

In this lecture we continue our theme of constructing new vector bun-

dles from old, but this time we focus on two constructions you may be

less familiar with on the linear algebra level.

Definition 19.1. Let V and W be two vector spaces. Their tensor

product is the vector space V ⊗W which is defined as follows. First,

let F (V ×W ) denote (infinite-dimensional) vector space which has as

basis all pairs (v, w) where v ∈ V and w ∈ W . Thus an element of

F (V ×W ) consists of a finite linear combination of pairs (v, w) with

v ∈ V and w ∈ W . Now let R(V,W ) denote the linear subspace of

F (V ×W ) generated by the set of all elements of the form
(v1 + v2, w)− (v1, w)− (v2, w), v1, v2 ∈ V, w ∈W,
(v, w1 + w2)− (v, w1)− (v, w2), v ∈ V, w1, w2 ∈W,
c(v, w)− (cv, w), v ∈ V, w ∈W, c ∈ R,

c(v, w)− (v, cw), v ∈ V, w ∈W, c ∈ R.

Let V ⊗W denote the quotient vector space F (V ×W )
/
R(V,W ). The

coset in V ⊗W containing (v, w) is denoted by v ⊗ w. By construction

one has
(v1 + v2)⊗ w = v1 ⊗ w + v2 ⊗ w, v1, v2 ∈ V, w ∈W,
v ⊗ (w1 + w2) = v ⊗ w1 + v ⊗ w2, v ∈ V, w1, w2 ∈W,
c(v ⊗ w) = (cv)⊗ w, v ∈ V, w ∈W, c ∈ R,

c(v ⊗ w) = v ⊗ (cw), v ∈ V, w ∈W, c ∈ R.

A typical element in V ⊗W is a finite sum
∑
i ci vi ⊗ wi where the ci

are real numbers. An element of the form v ⊗ w is called decompos-

able.

There is a natural bilinear map ⊗ : V ×W → V ⊗W that sends

(v, w) 7→ v ⊗ w. Here is a useful property of the tensor product.

Lemma 19.2. Let V,W and Z be vector spaces and suppose b : V ×
W → Z is a bilinear map. Then there exists a unique linear map

b̄ : V ⊗W → Z such that the following diagram commutes:

V ×W Z

V ⊗W

b

⊗ b̄

Moreover this property uniquely characterises V ⊗W .

Proof. Let b : V × W → Z be a bilinear function. We extend b by

linearity to a map F (V × W ) → Z. Bilinearity then tells us that

Last modified: July 17, 2021.
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R(V,W ) ⊂ ker b, and hence b factors to define a homomorphism b̄ : V ⊗
W → Z such that b̄(v ⊗ w) = b(v, w) for all (v, w) ∈ V ×W . Moreover

the map b̄ is unique, since the decomposable elements generate V ⊗W .

Finally, to see why this property uniquely determines ⊗, suppose

that X is another vector space equipped with a bilinear map β : V ×
W → X with the property that if B : V × W → Z is bilinear then The philosophy behind this style of

proof is explained in the bonus section

below.
there exists a unique linear map B̄ : X → Z such that the diagram

commutes:

V ×W Z

X

B

β B̄

We apply this with Z = V ⊗W and B := ⊗. This gives us a unique

linear map B̄ : X → V ⊗W such that B̄ ◦ β = ⊗. Now we go back

to our original diagram and chose Z = X and b := β. Thus we get

a unique linear map b̄ : V ⊗W → X such that the following spliced

diagram commutes.

V ×W V ⊗W V ×W

X X

id

β

⊗

b̄

⊗

β
B̄

Thus the composition b̄ ◦ B̄ makes this diagram commute:

V ×W X

X

β

β b̄◦B̄

But there is meant to only be one map that makes this diagram

commute, and another choice is the identity map X → X. Thus

b̄ ◦ B̄ = idX . Similarly B̄ ◦ b̄ = idV⊗W , and we conclude that X and

V ⊗W are isomorphic. This completes the proof.

Given two vector spaces V and W , let Hom(V,W ) denote the set

of linear maps from V to W . Thus Mat(m) = Hom(Rm,Rm) and

V ∗ = Hom(V,R).

Corollary 19.3. Let V and W denote vector spaces. There is a

natural isomorphism Hom(V,W ) ∼= V ∗ ⊗W .

Proof. Define b : V ∗ ×W → Hom(V,W ) by b(λ,w)(v) := λ(v)w. This

gives us a linear map b̄ : V ∗ ⊗W → Hom(V,W ) by Lemma 19.2. This

map is an isomorphism, as an inverse Hom(V,W ) → V ∗ ⊗W is given

by ` 7→ ei ⊗ `ei, where (ei) is any basis of V and (ei) is the dual basis

of V ∗.
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Corollary 19.4. If (ei) is a basis for V and (e′j) is a basis for W

then (ei⊗e′j) is a basis for V ⊗W . Thus dim(V ⊗W ) = dimV ·dimW .

The proof of the next result in on Problem Sheet H.

Lemma 19.5. If V,W and Z are vector spaces then there are natural

isomorphisms V ⊗W ∼= W ⊗ V and (V ⊗W )⊗ Z ∼= V ⊗ (W ⊗ Z).

Lemma 19.5 implies that we can unambiguously write V ⊗W ⊗ Z.

Definition 19.6. Let V be a vector space and let h and k be non-

negative integers. Define a new vector space Warning: Do not confuse this nota-

tion with the tangent space of V !

Th,kV := V ⊗ · · · ⊗ V︸ ︷︷ ︸
h copies

⊗
k copies︷ ︸︸ ︷

V ∗ ⊗ · · · ⊗ V ∗.

One calls an element of Th,kV a tensor of type (h, k). The vector

space Th,kV has dimension (dimV )h+k.

Note we are using Lemma 19.5 to write the right-hand side without

brackets. Lemma 19.5 also shows us that it is unimportant in which

order we present the factors: for convenience we write the V factors

first and the V ∗ factors afterwards.

Definition 19.7. Let Multh,k(V ) denote the space of multilinear

maps

V × · · · × V︸ ︷︷ ︸
h copies

×
k copies︷ ︸︸ ︷

V ∗ × · · · × V ∗ → R.

Thus Mult1,0(V ) = V ∗ and Mult0,1(V ) = V ∗∗ ∼= V .

Proposition 19.8. There is a canonical isomorphism between the Note the h and the k swapped

round—this is not a typo!vector space Th,kV and the vector space Multk,h(V ).

The proof of Proposition 19.8 uses the following piece of linear

algebra.

Definition 19.9. Let V and W be vector spaces. A perfect pairing

of V with W is a bilinear map β : V × W → R such that β(v, ·) is

identically zero if and only if v = 0, and β(·, w) is identically zero if

and only if w is zero.

Proposition 19.10. If there exists a perfect pairing β between V and

W then the map V → W ∗ given by v 7→ β(v, ·) is a linear isomor- This result fails if V is infinite-

dimensional.phism.

Example 19.11. The natural isomorphism V ∼= V ∗∗ arises from the

perfect pairing V × V ∗ → R given by (v, λ) 7→ λ(v).

Proof of Proposition 19.8. We prove the result in two steps.

1. In this step we define a perfect pairing of Th,kV with Th,kV ∗.

Namely, if

v = v1 ⊗ · · · ⊗ vh ⊗ λ1 ⊗ · · · ⊗ λk ∈ Th,kV

and

w = η1 ⊗ · · · ⊗ ηh ⊗ w1 ⊗ · · · ⊗ wk ∈ Th,kV ∗



4

then we can naturally feed them each other We are not using the Einstein Sum-

mation Convention in this formula –

this is a product not a sum!
β(v, w) :=

h∏
i=1

ηi(vi) ·
k∏
j=1

λj(wj) (19.1)

Now extend this bilinearly to all elements. It is immediate that this is

a perfect pairing; thus by Proposition 19.10 we have

Th,kV ∼=
(
Th,kV ∗

)∗
2. In this step we prove that

Multh,k(V ∗) ∼=
(
Th,kV ∗

)∗
(19.2)

The proof is by induction on h + k. The case h + k = 1 is exactly

Lemma 19.2. The inductive step follows Lemma 19.5 and Lemma 19.2

again. Explicitly, given a map b ∈ Multh,k(V ∗) there exists a unique

b̄ : Th,kV ∗ → R, i.e. T ∈
(
Th,kV ∗

)∗
such that the following diagram

commutes.

This diagram is rotated compared
to the diagram in the statement of

Lemma 19.2 so it fits on the page

better.

V ∗ × · · · × V ∗︸ ︷︷ ︸
h copies

×
k copies︷ ︸︸ ︷

V × · · · × V V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸
h copies

×
k copies︷ ︸︸ ︷

V ⊗ · · · ⊗ V

R

b

⊗

b̄

Since b is uniquely determined by b̄, this sets up the desired iso-

morphism (19.2). Finally, by definition we have Multh,k(V ∗) ∼=
Multk,h(V ), and so the proof is complete.

Remark 19.12. On decomposable elements the isomorphism Th,kV ∼=
Multk,h(V ) is easier to describe. Suppose for simplicity A ∈ T 2,3V is

the decomposable element

A = v1 ⊗ v2 ⊗ λ1 ⊗ λ2 ⊗ λ3.

If we use Proposition 19.8 to regard A as an element of Mult3,2 V then

A is given by

(w1, w2, w3, η
1, η2) 7→ η1(v1) η2(v2)λ1(w1)λ2(w2)λ3(w3).

We can use the Metatheorem to transfer these linear algebra con-

structions to vector bundles:

Corollary 19.13. Let V → E
π1−→ M and W → F

π2−→ M be two

vector bundles. Then there is a vector bundle V ⊗W → E ⊗ F π−→ M

whose fibre over p is Ep ⊗ Fp.

Proof. We form the principal GL(V )×GL(W ) bundle Fr(E)?Fr(F ) as

in Definition 18.9. The canonical action of GL(V )×GL(W ) on V ×W
induces by Lemma 19.2 an action of GL(V ) × GL(W ) on V ⊗ W .

Corollary 18.5 then produces our desired vector bundle

E ⊗ F def
=
(

Fr(E) ? Fr(F )
)
×GL(V )×GL(W ) (V ⊗W ).

This completes the proof.
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Corollary 19.14. Let V → E
π1−→ M and W → F

π2−→ M be

two vector bundles. Then there is a vector bundle Hom(V,W ) →
Hom(E,F )

π−→M whose fibre over p is Hom(Ep, Fp).

We call Hom(E,F ) the homomorphism bundle. In the special

case E = F we write End(E) := Hom(E,E) and call it the endomor-

phism bundle.

Proof. The group GL(V )×GL(W ) acts on Hom(V,W ) via

Φ 7→ B ◦ Φ ◦A−1,

for A ∈ GL(V ) and B ∈ GL(W ). Now argue as above.

Corollary 19.15. Let E and F be two vector bundles over M . Then

there is a natural vector bundle isomorphism

Hom(E,F ) ∼= E∗ ⊗ F.

Proof. Under the isomorphism from Corollary 19.3, the action of

GL(V )×GL(W ) on Hom(V,W ) 19 is exactly the same as the action of

GL(V )×GL(W ) on V ∗⊗W given by combining (18.4) with the action

used in the proof of with Corollary 19.13. Corollary 18.4 then supplies

the desired isomorphism.

Alternatively, one can argue directly: define

Φ: Hom(E,F )→ E∗ ⊗ F

fibrewise by declaring that the map Φp : Hom(Ep, Fp)→ E∗p ⊗Fp is the

isomorphism from Corollary 19.3. This assignment p 7→ Φp is smooth If you are worried about why p 7→ Φp
is smooth, you could use Proposition

20.23 from next lecture.
and thus Φ is a vector bundle isomorphism.

Similarly Lemma 19.5 tells us that the tensor product of vector

bundles is commutative and associative:

Corollary 19.16. Let D,E and F be three vector bundles over M .

Then the bundles E ⊗ F and F ⊗ E are isomorphic, and the bundles

D ⊗ (E ⊗ F ) and (D ⊗ E)⊗ F are isomorphic.

More generally:

Corollary 19.17. Let E be a vector bundle over M . Then there is

a vector bundle Th,kE over M whose fibre over p is the vector space Again: do not confuse Th,kE with
the tangent bundle TE. Th,kE is

a bundle over M , whereas TE is a
bundle over E.

Th,kEp.

Let us recall the formal definition of an algebra.

Definition 19.18. A vector space V is said to be an algebra if there

exists a bilinear map V × V → V , which we call multiplication By Lemma 19.2 this is equivalent to a
linear map V ⊗ V → V .and write as (v, w) 7→ vw. If V and W are algebras, an algebra

morphism ` : V →W is a linear map such that

`(vw) = `(v)`(w), ∀ v, w ∈ V.

Whilst each Th,kV is not an algebra, if we sum them all together

we obtain one.
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Definition 19.19. The tensor algebra of V is defined to be The tilde is there to prevent confusion

with the tangent bundle of V .

T̃ V :=
⊕
h,k≥0

Th,kV,

where T 0,0V := R. This is a graded algebra, in the sense that ⊗ gives

a natural map

⊗ : Th,kV × Th1,k1V → Th+h1,k+k1V. (19.3)

The natural map is defined as one would guess: on decomposable

elements it simply tensors everything together and then rearranges the

factors so the V elements come first, so as to fit with our convention.

We illustrate this with (h, k) = (1, 2) and (h1, k1) = (2, 1):(
(v1⊗λ1⊗λ2), (w1⊗w2⊗ η1)

)
7→ v1⊗w1⊗w2⊗λ1⊗λ2⊗ η1. (19.4)

If (h, k) = (0, 0) then tensor multiplication with a scalar is defined to

be normal scalar multiplication, i.e.

c⊗ v := cv, c ∈ R, v ∈ V.

Remark 19.20. The space T̃ V is an infinite-dimensional vector space. Actually this is only half the story:
T̃E is an example of an infinite-

dimensional vector bundle over M .

This goes beyond the scope of this
course, however, and we won’t need it.

This means we use cannot use Corollary 18.5 to produce a “vector

bundle” T̃ V → T̃E →M out of a vector bundle V → E →M .

We now introduce another linear algebra construction, called the

exterior algebra. This will associate to a vector space V another

(finite-dimensional) vector space
∧
V which, like the tensor algebra

T̃ V , admits an algebra structure.

Let V be a vector space. Let T̃+V denote the subalgebra given by

T̃+V :=
⊕

h≥0 T
h,0V . Let ĨV denote the two-sided ideal in T̃+V

generated by all elements of the form v ⊗ v for v ∈ V . Thus for

instance u⊗ v ⊗ v ⊗ w belongs to ĨV .

Definition 19.21. The exterior algebra is defined to be the quo-

tient algebra
∧
V := T̃+V/ĨV . We denote the image of v1 ⊗ · · · ⊗ vh in∧

V by v1 ∧ · · · ∧ vh and call ∧ the wedge product.

Such an element v1 ∧ · · · ∧ vh is called decomposable. The space∧
V is the quotient of one infinite-dimensional vector space by another.

As we will shortly see,
∧
V is always finite-dimensional.

Let
∧h
V to be the image of Th,0V in

∧
V under the projection

T̃+V →
∧
V there is a canonical vector space isomorphism∧h

V ∼= Th,0V
/
IhV,

where IhV := Th,0V ∩ ĨV . Note that
∧1
V = V and

∧0
V = R. This

definition may seem a little abstract, so let us unpack things a bit.

Proposition 19.22 (Properties of the wedge product). Let V be a

vector space. Then:
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(i) For all v, w ∈ V , v ∧ w = −w ∧ v.

(ii) Assume h, k > 0. If v ∈
∧h
V and w ∈

∧k
V then v ∧w ∈

∧h+k
V and

v ∧ w = (−1)hkw ∧ v,

This continues to hold if either h = 0 or k = 0 provided we use

the convention that for a real number c and a vector v, one has

c ∧ v := cv.

(iii) If v1 ∧ · · · ∧ vh ∈
∧h
V is a decomposable element then transposing

vi with vj acts as multiplication by -1:

v1 ∧ · · · ∧ vi ∧ · · · ∧ vj ∧ · · · ∧ vh = −v1 ∧ · · · ∧ vj ∧ · · · ∧ vi ∧ · · · ∧ vh

(iv) If % ∈ Sh is a permutation on h letters and vi ∈ V then

v%(1) ∧ · · · ∧ v%(h) = sgn(%)v1 ∧ · · · ∧ vh.

Proof. To prove part (i), we note that for any u ∈ V , u⊗ u belongs to

ĨV , and thus in
∧
V , u ∧ u = 0. Applying this with u = v + w we have

0 = (v + w) ∧ (v + w)

= v ∧ v + v ∧ w + w ∧ v + w ∧ w
= v ∧ w + w ∧ v.

To prove part (ii), as both sides are linear in v and w, it suffices to

verify it for decomposable elements, and for such, the conclusion fol-

lows by repeated applications of part (i). Next, to prove part (iii), we

may assume i < j. Set u := vi+1 ∧ · · · ∧ vj−1. Then by part (ii) one has

vi ∧ u ∧ vj = −vj ∧ u ∧ vi,

and thus part (iii) follows. Finally, part (iv) is immediate from the

fact that any permutation may be written as a product of transposi-

tions.

There is an analogous universal mapping property for the exterior

algebra.

Definition 19.23. Let V and W be vector spaces. Let Alth(V,W )

denote the space of alternating h-linear maps, i.e. multilinear

maps A : V × · · · × V → W (h times) that vanish whenever any two of

the arguments are equal:

A(· · · , v, · · · , v, · · · ) = 0.

We abbreviate Alth(V ) = Alth(V,R).

The map ∧ : V × · · · × V →
∧h
V given by sending (v1, . . . , vh) 7→

v1∧· · ·∧vh is an example of such a map. We aim to prove the following

alternating version of Proposition 19.8:

Proposition 19.24. There is a canonical isomorphism between
∧h
V ∗

and Alth(V ).
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The proof strategy is similar to that of Proposition 19.8, and we

will be brief. First, we need an analogue of Lemma 19.2.

Lemma 19.25. Let V and W be vector spaces. For any A ∈ Alth(V,W )

there is a unique linear map a :
∧h
V → W such that the following dia-

gram commutes:

h times︷ ︸︸ ︷
V × · · · × V W

∧h
V

A

∧ a

Moreover
∧h
V is uniquely characterised by this property.

The proof of Lemma 19.25 is on Problem Sheet H.

Proof of Proposition 19.24. Just as in the proof of step 2 of Proposi-

tion 19.8, an inductive argument based on Lemma 19.25 tells us that

we can identify

Alth(V ) ∼=
(∧h

V
)∗
.

The next step is to exhibit a perfect pairing of
∧h
V ∗ with

∧h
V . This

formula is a little harder to guess than in (19.1), but once you know

the formula it is easy to check. Namely, we define

α :
∧h
V ∗ ×

∧h
V → R

by declaring on decomposable elements that

α
(
λ1 ∧ · · · ∧ λh, v1 ∧ · · · ∧ vh

)
:= detA,

where A is the h×h matrix whose (i, j)th entry is λi(vj). Then extend

α by bilinearity to all of
∧h
V ∗ ×

∧h
V ∗. We invite you to verify this is

indeed a perfect pairing.

For later use, let us state part of the proof of Proposition 19.24 as a

separate corollary.

Corollary 19.26. Let λ1, . . . , λh ∈ V ∗ and v1, . . . , vh ∈ V . Then

viewing λ1 ∧ · · · ∧ λh as an element of Alth(V ), one has

λ1 ∧ · · · ∧ λh(v1, . . . , vh) = detA,

where A is the h× h matrix whose (i, j)th entry is λi(vj).

On Problem Sheet H you are also asked to show:

Lemma 19.27. Let V be a vector space of dimension n with basis

{e1, . . . , en}. Then

{ei1 ∧ · · · ∧ eih | 1 ≤ i1 < · · · < ih ≤ n}

is a basis of
∧h
V and

∧h
V = 0 for h > n. Thus dim

∧h
V =

(
n
h

)
and

dim
∧
V = 2n.
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We end today’s lecture by applying the Metatheorem to the opera-

tions
∧h

and
∧

.

Corollary 19.28. Let V → E
π−→ M be a vector bundle of rank n.

Then for any 0 ≤ h ≤ n, there is a vector bundle
∧h
E → M whose

fibre over p ∈ M is given by
∧h
Ep. This vector bundle has rank

(
n
h

)
.

Similarly there is a vector bundle
∧
E → M of rank 2n whose fibre

over p ∈ M is given by
∧
Ep. It is the direct sum of the vector bundles∧h

E.

The bundle
∧
E inherits an algebra structure from the algebra

structure on
∧
V .

Definition 19.29. Let V be vector space which is also an algebra in

the sense of Definition 19.18, and suppose that V → E
π−→ M is a

vector bundle. We say that E is an algebra bundle if each fibre Ep

admits the structure of an algebra, and there exists a vector bundle

atlas {(Ua, εa)} such that for each p ∈ Ua the map (εa)p : Ep → V is

not only a linear isomorphism but also an algebra isomorphism.

Corollary 19.30. Let V → E
π−→ M be a vector bundle. Then∧

V →
∧
E →M is an algebra bundle.

The proof of Corollary 19.30 is left for you on Problem Sheet H.

Remark 19.31. In Lecture 34 we will work with Lie algebra bun-

dles, which are algebra bundles with the additional property that the

algebra structure is actually a Lie algebra.

Bonus Material for Lecture 19

In the bonus material for this lecture, we introducing elements of a

field of mathematics called category theory. This material will not

be needed at any point during Differential Geometry I or II. Our aim

is to give a category-theoretic proof of the Metatheorem from the

previous lecture – see Theorem 19.60 below – which entirely bypasses

principal and associated bundles.

In a nutshell, category theory is the an attempt to make “proof

by analogy” a valid proof tactic. That is, category theory is an in-

terdisciplinary language that allows one to describe certain general

phenomena that crop up in mathematical arguments across the board.

The advantage of possessing such a language is clear – it allows one

to isolate the essence of a given statement or proof technique, thus

allowing for concise and clean proofs. It is also efficient: a single

category-theoretic blueprint can simultaneously prove diverse state-

ments in number theory, geometry, algebra, analysis, and so on. Cat-

egory theory is also useful in theoretical computer science; indeed,

many functional programming languages (eg. Haskel, Scala) are al-

most literal interpretations of categorical methods. The generality
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comes at a price, though: category theory is often (lovingly) referred

to as abstract nonsense.

You probably have already met several “category-theoretic” ar-

guments in your mathematical career so far. Roughly speaking, a

category-theoretic argument is one that focuses on transformations be-

tween objects of a given type, rather than on the objects themselves.

An example of this is Lemma 19.2 above, which characterised the ten-

sor product via a universal property. In general, a universal property

typically expresses a certain role that a given mathematical object

plays in relation to other objects of its type, and the abstract categor-

ical theorem is: if an object can be described by a universal property,

then it is unique up to isomorphism. If we were allowed to quote this

result, the proof of Lemma 19.2 would have been over at the end of

the first paragraph.

Before we get started on the definitions, let us list a few results

which you have probably already met that can all be proved used

categorical methods:

• If A and B are sets and f : A×B → R is a function, then

sup
a∈A

inf
b∈B

f(a, b) ≤ inf
b∈B

sup
a∈A

f(a, b)

whenever the infima and suprema exist.

• Cayley’s Theorem: Any finite group is isomorphic to a subgroup of

a permutation group.

• Every row operation on matrices with m rows is given by left multi-

plication by some m×m matrix.

• A continuous bijection between compact Hausdorff spaces is a

homeomorphism.

And now the definitions:

Definitions 19.32. A category C consists of three ingredients. The

first is a class obj(C) of objects. Secondly, for each ordered pair of

objects (A,B) there is a set Hom(A,B) of morphisms from A to B.

Sometimes instead of f ∈ Hom(A,B) we write f : A → B or A
f−→ B.

Finally, there is a rule, called composition, which associates to every

ordered triple (A,B,C) of objects a map

Hom(A,B)×Hom(B,C)→ Hom(A,C),

written

(f, g) 7→ g ◦ f,

which satisfies the following three axioms:

(i) The Hom sets are pairwise disjoint; that is, each f ∈ Hom(A,B)

has a unique domain A and a unique target B.

https://en.wikipedia.org/wiki/Abstract_nonsense
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(ii) Composition is associative whenever defined, i.e. given

A
f−→ B

g−→ C
h−→ D

one has

(h ◦ g) ◦ f = h ◦ (g ◦ f).

(iii) For each A ∈ obj(C) there is a unique morphism idA ∈ Hom(A,A)

called the identity which has the property that f ◦ idA = f and

idB ◦f = f for every f : A→ B.

Remark 19.33. Note that we said that obj(C) was a class and

Hom(A,B) was a set. There is (an important, but technical) difference

between a class and a set. If you’ve ever taken a class on logic/set

theory, you’ll know that not every “collection” of objects is formally a

set. For instance, the collection of all sets is itself not a set. A class is this is Russel’s Paradox.

a more general concept (the collection of all sets is a class). Neverthe-

less, as far as we’re concerned, the distinction is essentially irrelevant.

Here are six examples of categories. The first three are algebraic in

nature.

Example 19.34. The category Sets of sets. The objects of Sets are

all the sets, and Hom(A,B) is just the set Maps(A,B) of all func-

tions from A to B, and composition is just the usual composition of

functions.

Example 19.35. The category Groups of groups. The objects of

Groups are just groups, and Hom(G,H) is the set of all group homo-

morphisms from G to H, and composition is just the usual composi-

tion of homomorphisms.

Example 19.36. The category Vect = VectR of finite-dimensional

real vector spaces. The objects of Vect are finite-dimensional real

vector spaces, and Hom(V,W ) is the set Hom(V,W ) of all linear maps

from V to W .

Here are three more examples more pertinent to this course.

Example 19.37. The category Top of topological spaces. The ob-

jects of Top are all the topological spaces, and Hom(X,Y ) is just the

set C(X,Y ) of all continuous functions from X to Y , and composition

is just the usual composition of functions.

Example 19.38. The category Man of smooth manifolds. The

objects of Man are smooth manifolds, and Hom(M,N) is the set

C∞(M,N) of all smooth maps ϕ : M → N . Composition is given

by normal composition of maps; this is well defined by Proposition

1.21.

Example 19.39. The category VectBundles of vector bundles. The

objects of VectBundles are vector bundles π : E → M , and morphism

from π1 : E1 → M1 to π2 : E2 → M2 is a pair (Φ, ϕ), where ϕ : M1 →
M2 is a smooth map and Φ: E1 → E2 is a vector bundle morphism

from E1 to E2 along ϕ.

https://en.wikipedia.org/wiki/Russell%27s_paradox


12

Remark 19.40. The category Vect is rather special: its morphism sets

are themselves objects of the category. That is, if V and W are vector

spaces then Hom(V,W ) is itself naturally a vector space. This is not

true in the category of Groups—the set of all group homomorphisms

from one group to another typically does not have a group structure.

Similarly the set C∞(M,N) of smooth maps between two smooth

manifolds is never itself a (finite-dimensional) manifold when dimM >

0.

Remark 19.41. The fact that we require the morphism sets to be

pairwise disjoint has several pedantic consequences. For example,

suppose A ( B are two sets. Then the inclusion ı : A ↪→ B and

the identity map idA : A → A are different morphisms, since they

have different targets. One should be aware that we only allow the

composition g ◦ f when the range of f is exactly the same as the

domain of g. Suppose L,M,N and P are manifolds, and suppose M

is an embedded submanifold of N . Let ϕ : L → M be smooth and

let ψ : N → P be smooth. Then as we have seen, the composition

ψ ◦ ϕ : L → P is also smooth (since M is embedded). Nevertheless,

from the point of view of category theory, the composition ψ ◦ ϕ does

not exist! Rather, one must first take the inclusion ı : M ↪→ N and

then consider the composition ψ ◦ ı ◦ ϕ, which is a well-defined element

of the morphism space C∞(L,P ).

Definition 19.42. Suppose C and D are two categories. We say that

C is a subcategory of D if:

1. obj(C) ⊆ obj(D);

2. HomC(A,B) ⊆ HomD(A,B) for all A,B ∈ obj(C);

3. if f ∈ HomC(A,B) and g ∈ HomC(B,C) then the composite

g ◦ f ∈ HomC(A,C) is equal to the composite g ◦ f ∈ HomD(A,C);

4. if C ∈ obj(C) then idC ∈ HomC(C,C) is equal to idC ∈ HomD(C,C).

If for every pair A,B ∈ obj(C) one always has HomC(A,B) =

HomD(A,B) then we say that C is a full subcategory of D.

Example 19.43. Here are two examples of subcategories:

(i) The category Ab of abelian groups is a full subcategory of the cate-

gory Groups.

(ii) Let Vect≤∞ denote the category of all real vector spaces (finite-

dimensional or infinite-dimensional). Then Vect is a full subcate-

gory of Vect≤∞.

A functor is a map from one category to another. These come in

two flavours: covariant and contravariant. We discuss the former first.

Definition 19.44. Suppose C and D are two categories. A covariant

functor F : C → D associates to each A ∈ obj(C) an object F(A) ∈
obj(D), and to each morphism A

f−→ B in C a morphism F(A)
F(f)−−−→

F(B) in D which satisfies the following two axioms:
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1. If A
f−→ B

g−→ C in C then F(A)
F(f)−−−→ F(B)

F(g)−−→ F(C) in D and

F(g ◦ f) = F(g) ◦ F(f).

2. F(idA) = idF(A) for every A ∈ obj(C).

The easiest example of a functor is a forgetful functor:

Example 19.45. The forgetful functor Top → Sets simply “forgets”

the topological structure. Thus it assigns to each topological space its

underlying set, and to each continuous function it assigns the same

function, considered now simply as a map between two sets (i.e. it

“forgets” the function is continuous). The same thing works as a func-

tor Man→ Top, where one “forgets” the smooth manifold structure.

Example 19.46. There is slightly more interesting forgetful functor

VectBundles → Man that sends a vector bundle π : E → M to its base

space M (i.e. it “forgets” the vector bundle sitting over the base). On

morphisms, this functor just “forgets” the vector bundle morphism:

(ϕ,Φ) 7→ ϕ.

Here is a pertinent example of functor from the category Vect to

itself:

Examples 19.47. Let V be a fixed vector space. There is a covariant

functor

Hom(V, ·) : Vect→ Vect

that assigns to a vector space W the vector space Hom(V,W ). If

` : W1 →W2 is a linear map then

Hom(V, ·)(`) : Hom(V,W1)→ Hom(V,W2)

is given by `1 7→ `1 ◦ `.

In today’s lecture we constructed several functors:

Example 19.48. There is a covariant functor ⊗ : (Vect,Vect) → Vect

given by (V,W ) 7→ V ⊗W .

Example 19.49. There is a covariant functor
∧

: Vect→ Vect

Algebraic topology is an excellent source of functors. For instance,

the fundamental group π1 is a covariant functor from the pointed

homotopy category hTop∗ to Groups, and the higher homotopy

groups are covariant functors πn : hTop∗ → Ab. Singular homology

(or indeed, any homology theory) is a covariant functor hTop2 → Ab,

where hTop2 is the homotopy category of pairs.

One can also formulate the definition of a functor of more than one

variable. This requires us to define the notion of a product category.

Definition 19.50. Let C and D be two categories. The product cat-

egory (C,D) is the category whose objects are ordered pairs (C,D)

where C ∈ obj(C) and D ∈ obj(D), and

Hom((C,D), (C ′, D′)) = {(f, g) | f ∈ HomC(C,C ′), g ∈ HomD(D,D′)} .
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The composition (f, g) ◦(C,D) (f ′, g′) is defined as you expect:

(f, g) ◦(C,D) (f ′, g′) := ((f ◦C f ′), (g ◦D g′)) .

The identity element id(C,D) is simply the pair (idC , idD).

Example 19.51. The category (Vect,Vect) has objects ordered pairs

(V,W ) of vector spaces, and morphisms pairs of linear maps.

Definition 19.52. A covariant functor of two variables is a

covariant functor defined on a product category: F : (C,D)→ E.

Example 19.53. Let V and W be vector spaces. Then the direct We use the direct sum notation here

as well (instead of the product) so as
not to confuse you with the product

category.

sum V ⊕ W of V and W is another vector space. Thus we get a

functor ⊕ : (Vect,Vect) → Vect that assigns to (V,W ) the vector space

V ⊕W , and assigns to a pair (`1, `2) of linear maps `1 : V1 → V2 and

`2 : W1 →W2 the linear map `1 ⊕ `2 : V1 ⊕W1 → V2 ⊕W2.

In the same way, one can form a k-fold product category (C1, . . . ,Ck)

of categories Ci, and a covariant functor of k variables is a covari-

ant functor of the form F : (C1, . . . ,Ck) → D. For example, there is a

functor

(Vect, . . . ,Vect)→ Vect, (V1, . . . , Vk)→ V1 ⊕ · · · ⊕ Vk.

A contravariant functor is defined in almost the same way, but it

reverses the arrows.

Definition 19.54. Suppose C and D are two categories. A con-

travariant functor G : C → D associates to each A ∈ obj(C) an

object G(A) ∈ obj(D), and to each morphism A
f−→ B in C a morphism

G(B)
G(f)−−−→ G(A) in D which satisfies the following two axioms:

1. If A
f−→ B

g−→ C in C then G(C)
G(g)−−−→ G(B)

G(f)−−−→ G(A) in D and

G(g ◦ f) = G(f) ◦ G(g).

2. G(idA) = idG(A) for every A ∈ obj(C).

Here is a simple example of a contravariant functor on the category

of vector spaces.

Example 19.55. Let W be a fixed vector space. Then there is a

contravariant functor

Hom(·,W ) : Vect→ Vect

that assigns to a vector space V the vector space Hom(V,W ). If

` : V1 → V2 is a linear map then Note the order of V1 and V2!

Hom(·,W )(`) : Hom(V2,W )→ Hom(V1,W )

is given by `2 7→ ` ◦ `. It is important for you to understand why

Hom(V, ·) is covariant but Hom(·,W ) is contravariant.

Taking W = R shows that V 7→ V ∗ is a contravariant functor.
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Remark 19.56. Going back to algebraic topology, singular coho-

mology is a contravariant functor hTop2 → Ab. Later in this course

we will look at de Rham cohomology.

Similarly one can consider contravariant functors of more than one

variable. In fact, one can even consider functors that are covariant in

some variables and contravariant in others. This is easiest to see with

an example.

Example 19.57. Let Hom(·, ·) : (Vect,Vect)→ Vect denote the functor

that sends a pair (V,W ) to the vector space Hom(V,W ). As Example

19.47 and 19.55 showed, this is contravariant in the first variable and

covariant in the second variable. If `1 : V1 → V2 and `2 : W1 → W2

then

Hom(·, ·)(`1, `2) : Hom(V2,W1)→ Hom(V1,W2)

sends a linear map a : V2 →W1 to the linear map `2 ◦ a ◦ `1 : V1 →W2.

We have now almost arrived at the correct setting for which to

prove the Metatheorem. The only thing that is left is to take into the

account that we require our functors to be smooth.

Definition 19.58. Let F : Vect→ Vect be a covariant functor. We say

that F is smooth if for any two vector spaces V,W , the map

Hom(V,W )→ Hom(F(V ),F(W )), ` 7→ F(`)

is itself smooth in the normal sense.

A similar definition makes sense for functors of k variables which

are covariant in some variables and contravariant in others, provided

one remembers to flip the domain and target in each contravariant

variable:

Definition 19.59. Let F : (Vect, . . . ,Vect) → Vect be a functor of k

variables of either (or mixed) variance. We say that F is a smooth

functor if for any vector spaces V1, . . . Vk and W1, . . . ,Wk, the in-

duced map

r⊕
i=1

˜Hom(Vi,Wi)→ Hom(F(V1, . . . , Vk),F(W1, . . .Wk)),

(`1, . . . , `k) 7→ F(`1, . . . , `k) (19.5)

where

˜Hom(Vi,Wi) :=

Hom(Vi,Wi), if F is covariant in the ith variable,

Hom(Wi, Vi), if F is contravariant in the ith variable,

is a smooth map in the usual sense (note again each side is simply a

vector space).

In fact, in all the examples we have seen, the map (19.5) is actually

a linear map (and so is certainly smooth). We emphasise though that

for a general functor this may not be the case. Here now is a precise

statement of the Metatheorem.
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Theorem 19.60. Let F : (Vect, . . . ,Vect) → Vect be a smooth functor

of k variables of either variance in each variable. Let πi : Ei → M be k

vector bundles. Define

F(E1, . . . , Ek) :=
⊔
p∈M

F(E1|p, . . . , Ek|p),

with associated projection π : F(E1, . . . , Ek)→M . Then F(E1, . . . , Ek)

is a vector bundle.

The proof is very easy, but it is notationally quite challenging. We

recommend you write out for yourself the case k = 2 where F is say,

contravariant in the first variable and covariant in the second (the

Hom(·, ·) functor from Example 19.57 is such an example). Once you

understand this, the general case is just messier.

Proof. Choose an open set U ⊂ M over which all the Ei are trivial,

i.e. so that there exist vector bundle charts εi : π
−1
i (U) → Rni , where

Ei has rank ni. Then for each p ∈ U and each i, we have a linear

isomorphism εi|p : Ei|p → Rni . Set

ε̃i|p :=

εi|p : Ei|p → Rni , if F is covariant in the ith variable,

ε−1
i|p : Rni → Ei|p, if F is contravariant in the ith variable.

Since F is a functor, we can feed it the morphisms ε̃i,p to get a map

ε̃p = F(ε̃1|p, . . . , ε̃k|p) ∈ Hom
(

F
(
E1|p, . . . , Ek|p

)
,F
(
Rn1 , . . . ,Rnk

))
By functoriality, ε̃p is linear isomorphism. Define ε̃ : π−1(U) →
F(Rn1 , . . . ,Rnk) by letting ε̃ be equal to ε̃p on F(E1|p, . . . , Ek|p). We

now declare ε̃ to be a bundle chart for F(E1, . . . , Ek) over U .

To complete the proof, we need to show that the transition func-

tions are smooth linear isomorphisms. For this, suppose γi : π
−1
i (U) →

Rki were different choices of vector bundle chart on each Ei, with cor-

responding chart γ̃ on F(E1, . . . , Ek). Let gi(p) = εi|p ◦ γ−1
i|p denote the

transition functions on Ei from the εi to the γi. We must show that

the transition function g(p) := ε̃p ◦ γ̃−1
p is smooth and linear. But this

again follows almost immediately from functoriality. If p ∈ U then

g(p) = ε̃|F(E1|p,...,Ek|p) ◦ γ̃|−1
F(E1|p,...,Ek|p)

= F(ε̃1|p, . . . , ε̃k|p) ◦ F(γ̃1|p, . . . , γ̃k|p)
−1

= F(ε̃1|p, . . . , ε̃k|p) ◦ F(γ̃−1
1|p, . . . , γ̃

−1
k|p)

= F
(
ε̃1|p ◦ γ−1

1|p, . . . ε̃k|p ◦ γ
−1
k|p
)

= F
(
g̃1(p), . . . g̃k(p)

)
,

where

g̃i(p) :=

gi(p) if F is covariant in the ith variable,

gi(p)
−1 if F is contravariant in the ith variable.

Thus since F is a functor, F(g̃1(p), . . . g̃k(p)) is a linear isomorphism.

Moreover since F is a smooth functor, p 7→ F(g̃1(p), . . . g̃k(p)) depends

smoothly on p. This completes the proof.
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Theorem 19.60 bypasses the Corollary 18.5. But it is not yet

enough by itself, as we have not yet proved the analogue of Corol-

lary 18.4 – namely, that the vector bundle given by Theorem 19.60 is

unique up to isomorphism.

This however is easily rectified, but it requires introducing natural

transformations, which, roughly speaking, are functors between

functors.

Definition 19.61. Let C and D be two categories, and let F,G : C →
D be two functors. A natural transformation τ : F → G is a family

of morphisms τC : F(C) → G(C) for each C ∈ obj(C) such that for any

morphism f : A→ B in C the following diagram commutes:

F(A) G(A)

F(B) G(B)

τA

F(f) G(f)

τB

If each morphism τC is an isomorphism then we say that τ is a natu-

ral isomorphism.

In the previous lecture we briefly discussed the difference between

canonical isomorphisms and non-canonical isomorphisms. To illustrate

this, let us give a proper (18.6) from the previous lecture.

Theorem 19.62. A finite-dimensional vector space V is canonically

isomorphic to its double dual V ∗∗.

Proof. Let F : Vect→ Vect denote the functor

F(V ) := V ∗∗ = Hom(Hom(V,R),R).

If A` : V → W is a linear map then F(`) : F(V ) → F(W ) is the linear

map usually written as `∗∗ : V ∗∗ →W ∗∗ and defined by

`∗∗(ϕ)(η) = ϕ(η ◦ `) ϕ ∈ V ∗∗, η ∈W ∗.

Let evV : V → V ∗∗ denote the map

evV (v)(η) := η(v), η ∈ V ∗.

We claim that ev is a natural isomorphism from the identity functor to

F. This comes down to showing that the following diagram commutes

for any pair of vector spaces V,W and any linear map ` : V →W :

V V ∗∗

W W ∗∗

evV

` `∗∗

evW

This is trivial: if η ∈W ∗ and observe:

`∗∗evV (v)(η) = evV (v)(η ◦ `)
= η(`v)

= ev`v(η).

The proof is complete.
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Remark 19.63. If we work on the larger category Vect≤∞ of all (not

necessarily finite-dimensional) vector spaces, ev is still a natural trans-

formation, but no longer a natural isomorphism.

Theorem 19.60 admits the following enhancement.

Theorem 19.64. Let F1 and F2 be two functors as in the statement

of Theorem 19.60. Assume there exists a smooth natural isomorphism

τ : F1 → F2. Then the vector bundles obtained by applying Theorem

19.60 to F1 and F2 are naturally isomorphic.

Corollary 19.3 and Corollary 19.16 are special cases of Theorem

19.64.



Will J. Merry

LECTURE 20

Sections of Vector Bundles

A fibre bundle π : E → M is a surjective submersion between man-

ifolds with the property that the domain E has extra structure.

Smooth maps that go in the opposite direction are—from the point

of view of fibre bundles—uninteresting unless they respect this extra

structure.

Definition 20.1. Let L → E
π−→ M be a fibre bundle. A section of We should really say “smooth sec-

tion”, but since we will never consider
non-smooth sections, we omit the

adjective.

E is a smooth map s : M → E such that π ◦ s = id, that is, a smooth

map s : M → E such that

s(p) ∈ Ep, ∀ p ∈M. (20.1)

The set of all sections is denoted by Γ(E). A local section of E is a

section of the bundle π−1(U) → U of E over an open set U ⊂ M . We

denote by Γ(U,E) the set of all local sections with domain U .

Examples 20.2. Here are some examples of sections:

(i) Let M be a manifold. A vector field X on M is a section of the

tangent bundle. Thus

X(M) = Γ(TM).

Similarly a vector field X defined on an open subset of M is a local

section:

X(U) = Γ(U, TM).

In particular, if (U, x) is a chart on M with local coordinates (xi)

then ∂
∂xi is an element of Γ(U, TM).

(ii) In a similar vein, if f ∈ C∞(M) then in Example 5.2 we defined a

section df of T ∗M . If f ∈ C∞(U) then df ∈ Γ(U, T ∗M).

(iii) A section of the trivial fibre bundle M × L → M is the same

thing as a smooth map M → L. Thus for instance, a section of

M × R→M is just a smooth function on M .

(iv) Let π1 : E → M and π2 : F → M denote two vector bundles,

and consider the bundle vector bundle Hom(E,F ). A section Φ ∈
Γ(Hom(E,F )) is a smooth map p 7→ Φp where Φp : Ep → Fp is a

linear map. Thus:

Γ(Hom(E,F )) = {vector bundle homomorphisms Φ: E → F}.

Local sections always exist:

Lemma 20.3. Let L→ E
π−→M be a fibre bundle and let p ∈M . Then

there exists a neighbourhood U of p and a local section s ∈ Γ(U,E).

Last modified: July 17, 2021.

https://www.merry.io


2

Proof. The map π is a surjective submersion by Lemma 16.4. Now

apply Proposition 6.13.

The existence of a global section is sometimes not automatic:

Proposition 20.4. Let M be a smooth manifold.

(i) Let π : E →M be a vector bundle. Then Γ(E) 6= ∅.

(ii) Let π : P → M be a principal G-bundle. Then Γ(P ) 6= ∅ if and only

if P = M ×G is trivial.

Proof. We prove the two cases separately.

• (i): The map

o : M → E, p 7→ 0 ∈ Ep

is a global smooth section. We call o the zero section.

• (ii): If P = M × G is the trivial bundle, then for any g ∈ G the

map s(p) := (p, g) is a section. Conversely, let τ denote the free

right action and suppose s : M → P is a section. Then since p

and s(π(p)) belong to the same fibre for each p ∈ P , there is a

well-defined equivariant map ε : P → G such that

p = τε(p)(s(π(p))), ∀ p ∈ P.

We claim that ε is a principal bundle chart, whence P is a trivial

bundle. For this we need to prove that (π, ε) : P → M × G is a

diffeomorphism. But this follows from Lemma 17.14, since (π, ε) is

a principal bundle morphism along the identity map on M .

For vector bundles we can do more than just ask for a single local

section.

Definition 20.5. Let π : E → M be a vector bundle of rank n and

let U ⊂ M be open. A local frame for E over U is a collection

(e1, . . . , en) of sections ei ∈ Γ(U,E) such that {e1(p), . . . , en(p)} form a

basis of the vector space Ep for each p ∈ U .

Here are three equivalent ways to think of local frames:

Lemma 20.6. Let π : E → M be a vector bundle and suppose U ⊂ M

is an open set. The following are equivalent.

(i) There exists a local frame for E over U .

(ii) There exists a vector bundle chart ε : π−1(U)→ Rn.

(iii) There exists a section of the frame bundle over U : Γ(U,Fr(E)) 6= ∅.

Proof. Suppose (ei) is a local frame over U . Then every point v ∈
π−1(U) can be written as uniquely as linear combination v = ai ei(p).

We define

ε : π−1(U)→ Rn, v 7→ (a1, . . . , an). (20.2)

This is a vector bundle chart. This shows that (i) ⇒ (ii).
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Conversely if ε : π−1(U) → Rn is a vector bundle chart then if we

define

ei(p) := ε−1
p (ei),

where ei is the standard basis vector in Rn, then ei is smooth (use the

argument from the proof of Lemma 20.9) and the collection {ei(p)} is

a basis of Ep since εp is a linear isomorphism. This shows (ii) ⇒ (i).

A section s of the frame bundle Fr(E) over U is by definition a

smooth map s : U → Fr(E) such that s(p) ∈ Fr(Ep), that is, s(p) is a

linear isomorphism Rn → Ep. Define ei ∈ Γ(U,E) by ei(p) := s(p)ei.

Then (ei) is a local frame for E over U . Conversely starting with (ei)

and defining s by the same equation produces a local section of Fr(E)

over U . This shows (i) ⇔ (iii).

A global frame of a vector bundle is a frame defined on U = M .

The next statement is the generalisation to arbitrary vector bundles of

of Problem F.1.

Corollary 20.7. A vector bundle π : E → M admits a global frame

if and only if it is trivial.

Lemma 20.8. Let π : E → M be a fibre bundle and let s ∈ Γ(U,E).

Then s(U) is an embedded submanifold of E of dimension equal to the

dimension of M .

Proof. If (V, x) is a chart on M with V ⊂ U then x ◦ π is a chart on

s(V ).

Applying this to the zero section allows us of a vector bundle allows

us to see M ∼= o(M) as an embedded submanifold of E.

The space of sections of a vector bundle has extra structure not

present in normal fibre bundles. We already saw this for vector fields

in Lecture 8, but let us go over it again here.

Lemma 20.9. Let π : E → M be a vector bundle. Then for any non- Here and elsewhere one should im-

plicitly assume that all vector bundles

have strictly positive rank.
empty open set U ⊂ M , the set Γ(U,E) is an infinite-dimensional real

vector space and a module over the ring C∞(U).

Proof. Suppose s ∈ Γ(U,E). Let x : V → O be a chart on V ⊂ U and

let ε be a vector bundle chart on E defined on π−1(V ). Then as in

Remark 16.5, we may take (x ◦ π, ε) as a chart on E. The assumption

that s is smooth means that the composition

(x ◦ π, ε) ◦ s ◦ x−1 : O → O × Rn

is smooth. Moreover the section property tells us that this local map

is of the form

(x ◦ π, ε) ◦ s ◦ x−1 = (id, s̃) (20.3)

where s̃ : O → Rn is some smooth map. Just as in the proof of Propo-

sition 8.2, this argument reverses, and we see that a map s satisfy-

ing the section property is smooth if and only if each local map s̃ is

smooth.
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With this in hand the lemma is trivial: if r and s are two sections

and c ∈ R then p 7→ cr(p) + s(p) certainly satisfies the section property

(20.1), and its local expression is given by cr̃ + s̃ which is smooth if r̃

and s̃ are. Moreover if f ∈ C∞(U) then we define

(fs)(p) := f(p)s(p), p ∈ U.

The local expression of fs is f̃ s̃ where f̃ = f ◦ x−1. This is smooth.

Finally, the vector space C∞(U) is infinite-dimensional by Lemma

2.13, and hence any non-zero module over it is a fortiori infinite-

dimensional over R.

The analogue of part (iii) of Proposition 8.2 also holds for general

vector bundles.

Remark 20.10. If (ei) is a local frame for E over U then any (not

necessarily smooth) map s : U → E satisfying the section property

(20.1) can be written as

s = f iei, for some functions f i : U → R.

If we take the vector bundle chart ε on E from (20.2) associated to the

local frame (ei) then for any chart x on M with appropriate domain,

the function s̃ associated to s from (20.3) is given by

s̃(q) =
(
f1(x−1(q)), . . . , fn(x−1(q))

)
.

This tells us that s is smooth (and hence belongs to Γ(U,E)) if and

only if the functions ai are smooth functions on U .

The next lemma is analogous to Problem D.2 and is thus left as an

exercise.

Lemma 20.11. Let π : E → M be a vector bundle. Let p ∈ M and

v ∈ Ep. Then there exists a section s ∈ Γ(E) with s(p) = v.

An application of the Bump Functions Lemma 3.2 gives us the

following result.

Lemma 20.12. Let π : E → M be a vector bundle and let s ∈ Γ(U,E).

Fix p ∈ U . Then there exists a global section r ∈ Γ(E) such that r

agrees with s on a neighbourhood of p.

Proof. Choose a neighbourhood V of p with V ⊂ U . Choose a bump

function χ : M → R such that χ(q) = 1 for all q ∈ V and such that

supp(χ) ⊂ U . Define r : M → E by

r(q) :=

χ(q)s(q), q ∈ U,
0, q ∈M \ U.

Then r is smooth and agrees with s on the neighbourhood V of p.

Definition 20.13. A local frame (ei) of E over U determines a local

frame (ei) of the dual bundle E∗ over U by requiring that Exercise: Why is this smooth?

ei(p)(ej(p)) = δij , for all p ∈ U.

We call (ei) the dual frame to (ei).
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Convention. If λ ∈ Γ(U,E∗) is a section of a dual bundle, we nor- This is consistent with our notation

dfp for the differential of f at p, i.e.

the value of the section df ∈ Γ(T ∗M)
at p.

mally write λp instead of λ(p) for the value of λ at p. Thus λp : Ep →
R is a linear map.

Remark 20.14. If s ∈ Γ(U,E) then if we write s = f i ei for smooth

functions f i as per Remark 20.10 then observe that

eip(s(p)) = f i(p).

Similarly if λ ∈ Γ(U,E∗) is any section of the dual bundle then we can

write λ = gie
i where the function gi ∈ C∞(U) are given by

gi(p) = λp(ei(p)).

Example 20.15. Let M be a smooth manifold, and let (U, x) be a

chart on M with local coordinates (xi). Then{
∂

∂xi
| i = 1, . . . ,m

}
is a local frame for TM over U . Similarly

{dxi | i = 1, . . . ,m}

is a local frame for T ∗M over U . This is the dual frame. Taking this

one step further, {
∂

∂xi
⊗ dxj | 1 ≤ i, j ≤ m

}
is a local frame for TM ⊗ T ∗M over U .

We now introduce two key properties that a linear operator between

spaces of sections may or may not have.

Definition 20.16. Let π1 : E → M and π2 : F → M be two

vector bundles over the same manifold M . Suppose ζ : Γ(E) →
Γ(F ) is an R-linear operator.

• We say that ζ is a local operator if whenever a section s ∈
Γ(E) vanishes on an open set U ⊂ M , ζ(s) ∈ Γ(F ) also van-

ishes on U .

• We call ζ a point operator if whenever a section s ∈ Γ(E)

vanishes at a point p, ζ(s) also vanishes at p.

Any point operator is clearly a local operator, but the converse

is not true.

Example 20.17. By part (iii) of Example 20.2, the space C∞(R)

can be identified with the space of all sections of the trivial bundle

R× R→ R. Differentiation

C∞(R)→ C∞(R), γ 7→ γ′

is a local operator (since if γ is constant on an open set its derivative

is also constant on that open set) but it is not a point operator.
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More generally:

Example 20.18. Let M be a smooth manifold, and let X ∈ X(M) de-

note a vector field. Regard X as a derivation of C∞(M) as in Proposi-

tion 8.7, or equivalently, as a linear operator Γ(M × R) → Γ(M × R)

(as in part (iii) of Examples 20.1). Then f 7→ X(f) is a local operator

by Corollary 3.4, but not a point operator.

Local operators behave well under restriction.

Proposition 20.19. Let π1 : E → M and π2 : F → M be two vector

bundles and suppose ζ : Γ(E) → Γ(F ) is a local operator. Then for

each open set U ⊂ M , there is a unique R-linear map ζU : Γ(U,E) →
Γ(U,F ), called the restriction of ζ to U , such that for any global

section s, one has

ζU (s|U ) = ζ(s)|U . (20.4)

Proof. Let s ∈ Γ(U,E) and fix p ∈ U . By Lemma 20.12 there exists a

global section r of E that agrees with s in some neighbourhood V of p.

We set

ζU (s)(p) := ζ(r)(p).

This is well-defined, i.e. independent of the choice of r, since ζ is a

local operator. Since ζ(r) is smooth by assumption, it follows ζU (s) is

smooth at p, and since p was arbitrary, ζU (s) is smooth. Finally, if s is

a global section then s is an extension of s|U for any open U , and thus

(20.4) follows.

As the proof of Proposition 20.19 shows, the operator ζU is itself a

local operator.

So far we have looked at operators which are R-linear. Since Γ(E)

and Γ(F ) are modules over C∞(M), we could instead restrict our

attention to operators that are C∞(M)-linear, i.e. Note C∞(M)-linear implies R-linear,

since we may regard R ⊂ C∞(M) via
the constant functions.ζ(fs) = fζ(s), ∀ f ∈ C∞(M), s ∈ Γ(E).

Actually this is the same thing as working with point operators, as the

next result shows.

Theorem 20.20. Let π1 : E → M and π2 : F → M be two vector

bundles over M . An R-linear operator ζ : Γ(E) → Γ(F ) is a point

operator if and only if ζ is C∞(M)-linear.

Proof. We prove the result in four steps.

1. In this first step we show that a C∞(M)-linear operator ζ : Γ(E)→
Γ(F ) is a local operator. Suppose s ∈ Γ(E) vanishes on an open set U .

Let p ∈ U , and choose a bump function χ : M → R such that χ(p) = 1

and supp(χ) ⊂ U . Then χs is identically zero on M , and so ζ(χs) is

identically zero. However evaluating at p and using C∞(M)-linearity,

0 = ζ(χs)(p) = χ(p)ζ(s)(p) = ζ(s)(p).

Since p was an arbitrary point of U , we have ζ(s)|U ≡ 0 as required.

2. Since ζ is a local operator, by Proposition 20.19 the local opera-

tors ζU are defined. In this step we show that such a local operator ζU

is itself C∞(U)-linear.
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Fix s ∈ Γ(U,E), f ∈ C∞(U). We want to show that ζU (fs) =

fζU (s). Fix p ∈ U and let r ∈ Γ(E) denote a global section that agrees

with s on a neighbourhood of p, and let g be a global smooth function

that agrees with f on a neighbourhood of p. Then The existence of g is a special case

of Lemma 20.12, cf. part (iii) of

Examples 20.2, but it was also proved
directly in Step 2 or Proposition 3.3.

ζU (fs)(p) = ζ(gr)(p)

= g(p)ζ(r)(p)

= f(p)ζU (s)(p).

Since p was arbitrary, we see that ζU (fs) = fζU (s), as required.

3. We now show that ζ is actually a point operator. Let s ∈ Γ(E).

Suppose s(p) = 0. Choose an neighbourhood U of p admitting a local

frame (ei). Then we can write

s|U = f iei, f i ∈ C∞(U).

Since s(p) = 0 we have f i(p) = 0 for each i. We now compute:

ζ(s)(p) = ζU (s|U )(p)

= ζU (f iei)(p)

= f i(p)ζU (ei)(p)

= 0,

where the first equality used Proposition 20.19 and the penultimate

equality used the previous step.

4. Finally we prove the converse: suppose ζ : Γ(E) → Γ(F ) is a

point operator. Fix f ∈ C∞(M), s ∈ Γ(E) and p ∈ M . Let c := f(p).

Then fs − cs vanishes at p, and thus ζ(fs − cs)(p) = 0 as ζ is a point

operator. Since ζ is R-linear,

ζ(fs)(p) = ζ(cs)(p)

= cζ(s)(p)

= f(p)ζ(s)(p).

Since p was arbitrary, ζ(fs) = fζ(s). This completes the proof.

Let us now return to part (iv) of Examples 20.2: a vector bundle

homomorphism Φ: E → F is the same thing as a section of the homo-

morphism bundle Hom(E,F ). The aim of the rest of this lecture is to

give yet another alternative description of a vector bundle homomor-

phism.

Definition 20.21. Let π1 : E → M and π2 : F → M denote two

vector bundles over the same manifold M . Let Φ: E → F denote a

vector bundle homomorphism. We define an operator

Φ∗ : Γ(E)→ Γ(F ), s 7→ Φ ◦ s.

Proposition 20.22. Let π1 : E → M and π2 : F → M denote two

vector bundles over the same manifold M . Let Φ: E → F denote a

vector bundle homomorphism. Then Φ∗ : Γ(E) → Γ(F ) is C∞(M)-

linear, and hence a point operator.
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Proof. The map Φ∗ is clearly a linear map between the two vector

spaces Γ(E) and Γ(F ). More is true: Φ∗ is actually a module ho-

momorphism, i.e. it is linear over C∞(M). Indeed, if f ∈ C∞(M),

s ∈ Γ(E), and p ∈M then

Φ∗(fs)(p) = Φ ◦ (fs)(p)

= Φ|p(f(p)s(p))

= f(p)Φp(s(p))

= (fΦ∗(s))(p),

where the penultimate equality used that Φp is a linear map.

The main result of today’s lecture, the Hom-Gamma Theorem

20.25, states that every point operator Γ(E) → Γ(F ) is a of the form

Φ∗. This requires some more preparation.

As we have seen in Example 20.18, a vector field on a manifold

can be thought of an operator on the space of sections of the trivial

bundle M × R via f 7→ X(f). The next result generalises part (ii) of

Proposition 8.2 to arbitrary vector bundles.

Proposition 20.23. Let π1 : E → M and π2 : F → M be two vector

bundles. Suppose Φ: E → F is a fibre-preserving map such that

Φp : Ep → Fp is linear for every p ∈ M . Then Φ is smooth (and hence

a vector bundle homomorphism) if and only if Φ∗(s) := Φ ◦ s belongs

to Γ(U,F ) for every s ∈ Γ(U,E).

Proof. If Φ is smooth then certainly Φ ◦ s is smooth. For the converse,

let p ∈ M and suppose (U, x) is a chart on M with local coordinates

(xi). We may assume that both E and F admit local frames over U ;

call them (ej) and (e′i) respectively. Since Φ∗ maps smooth sections to

smooth sections, there are functions f ij ∈ C∞(U) such that

Φ∗(ej) = f ij e
′
i.

Let ε1 and ε2 denote the vector bundle charts on E and F respectively

associated to (ej) and (e′i) from part (ii) of Lemma 20.6. Then (x ◦
π1, ε) is a manifold chart on E on π−1

1 (U), and (x◦π2, ε2) is a manifold

chart on F on π−1
2 (U). Let aj ∈ C∞(π−1

1 (U)) denote the smooth

functions defined implicitly by the requirement

v = aj(v)ej(π1(v)), ∀ v ∈ π−1
1 (U).

Then the local expression of Φ is of the form:

(x ◦ π2, ε2) ◦ Φ ◦ (x ◦ π1, ε1)−1 =
(

id, (ajf1
j , . . . , a

jfnj ) ◦ x−1
)
,

which is smooth.

Proposition 20.24. Let π1 : E → M and π2 : F → M be two vector

bundles. Suppose ζ : Γ(E) → Γ(F ) is a C∞(M)-linear map. Then for

each p ∈M there is a unique linear map Φp : Ep → Fp such that for all

s ∈ Γ(E), one has

Φp(s(p)) = ζ(s)(p).
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Proof. Fix p ∈ M and v ∈ Ep. By Lemma 20.11 there exists a section

s such that s(p) = v. Define Φp(v) := ζ(s)(p). This definition is

independent of the choice of s, since if s1 was another such section

then (s − s1)(p) = 0, and thus ζ(s)(p) − ζ(s1)(p) = ζ(s − s1)(p) = 0

since ζ is a point operator by Theorem 20.20.

We claim that Φp is a linear map. Indeed, if v1, v2 ∈ Ep and c ∈ R,

then if s1 and s2 are sections such that si(p) = vi then cs1 + s2 is a

section whose value at p is cv1 + v2 and

Φp(cv1 + v2) = ζ(cs1 + s2)(p)

= cζ(s1)(p) + ζ(s2)(p)

= cΦp(v1) + Φp(v2).

This completes the proof.

We now move onto our main result.

Theorem 20.25 (The Hom-Gamma Theorem). Let π1 : E → M

and π2 : F → M be two vector bundles. Then there is a one-to-one

correspondence between

{vector bundle homomorphisms Φ: E → F}

and

{point operators ζ : Γ(E)→ Γ(F )}

given by

Φ 7→ Φ∗.

The reason for the name will be explained after the proof.

Proof. We first prove surjectivity. If ζ : Γ(E) → Γ(F ) is a C∞(M)-

linear map then by Proposition 20.24 there exists a linear map Φp : Ep →
Fp such that for any s ∈ Γ(E), Φp(s(p)) = ζ(s)(p). Define Φ: E → F

by declaring that Φ|Ep = Φp. Then by Proposition 20.23, the map Φ is

a vector bundle homomorphism, and clearly Φ∗ = ζ.

To prove injectivity, suppose Φ∗ = Ψ∗. Let p ∈ M and v ∈ Ep and

let s ∈ Γ(E) be a section such that s(p) = v (using Lemma 20.11).

Then

Φ(v) = Φ(s(p))

= Φ∗(s)(p)

= Ψ∗(s)(p)

= Ψ(s(p))

= Ψ(v).

Since p and v were arbitrary we conclude Φ = Ψ as required.

Remark 20.26. Why the name “Hom-Gamma Theorem”? Suppose R

is a commutative ring and X,Y are two R-modules. Let us write

Hom(X,Y ) = {f : X → Y is an R-module homomorphism}.
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In the case R = R, modules are just vector spaces, and this coincides

with our notation for Hom(V,W ) as the set of linear maps from V

to W . We now apply this with R = C∞(M). By Theorem 20.20, an

element

ζ ∈ Hom
(
Γ(E),Γ(F ))

is the same thing as a point operator. Thus the Hom-Gamma Theo-

rem 20.25 tells us that

Γ
(
Hom(E,F )

) ∼= Hom
(
Γ(E),Γ(F )

)
, (20.5)

in other words,

The operations Hom and Γ commute.

Bonus Material for Lecture 20

In today’s bonus section, we make another algebraic interlude and

introduce the notion of a sheaf. As with the category theory material

from the previous lecture, this is for interest only, and is not needed to

understand any of the subsequent lectures.

Roughly speaking, a presheaf is a way to assign data locally to

open subsets of a topological space in such a way that it is compatible

with restrictions. A sheaf is a presheaf for which it is possible to go

backwards and reassemble global data from local data.

Definition 20.27. Let X denote a topological space. A presheaf F
of sets on X consists of:

(i) A set F(U) for every open set U ⊂ X.

(ii) For every pair U ⊂ V of open sets a map resVU : F(V ) → F(U)

called the restriction map such that resUU = idF(U) for every U

and such that

resWU = resVU ◦ resWV , whenever U ⊂ V ⊂W.

Definition 20.28. Let F and G be two presheaves on X. A mor-

phism of presheaves ζ : F → G is a family of maps ζU : F(U) →
G(U) such that for every pair of open sets U ⊂ V the following dia-

gram commutes:

F(V ) G(V )

F(U) G(U)

ζV

resVU resVU

ζU

If ζ : F → G and ξ : G → H are two morphisms of presheaves over X

then their composition ξ ◦ ζ : F → H is defined as one would guess:

(ξ ◦ ζ)U := ξU ◦ ζU .
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An isomorphism is a presheaf morphism such that each ζU is a

bijection.

This gives us the category PSh(X; Sets) of presheaves on X whose

objects are the presheaves on X and whose morphisms are presheaf

morphisms.

Definition 20.29. Let C be an arbitrary category. A presheaf F
on X with values in C is defined in almost the same way, only now

each F(U) must be an object of C, each restriction map resVU must be

a morphism in C, and morphisms between two presheaves must also be

morphisms in C.

To give a concrete example, let’s take C = Vect. A presheaf of

vector spaces is thus an assignment of a vector space F(U) for every

open set U ⊂ X, and the restriction maps resVU must be linear trans-

formations F(V ) → F(U). Finally if ζ : F → G is a morphism of

presheaves of vector spaces then each ζU must be a linear transforma-

tion F(U) → G(U). In particular, an isomorphism of presheaves of

vector spaces requires each ζU to be a linear isomorphism.

Remark 20.30. Here is an alternative more categorical definition

of a presheaf. Let Open(X) denote the category whose objects are

the open sets of X and, for two open sets U , V , the morphism space

Hom(U, V ) consists of the inclusion map U ↪→ V if U ⊂ V and is

empty otherwise. Then a presheaf on X with values in C is simply a

contravariant functor Open(X) → C. A morphism ζ : F → G is a

natural transformation ζ between the two functors.

If F is a presheaf on X and s ∈ F(V ) then for U ⊂ V we normally

abbreviate

s|U := resVU (s)

This fits in with the idea that we are “restricting” s to U . In fact, ev-

ery single presheaf we will care about in the course will be a presheaf

of functions, which we now define, and in this case restriction really is

restriction.

Definition 20.31. Let X be a topological space and let S be a

fixed set. A presheaf of S-valued functions is a presheaf with

the property that F(U) ⊂ Maps(U, S) for all open sets U ⊂ X, where

Maps(U, S) denotes the set of all functions from U to S (i.e. the mor-

phism set in category Sets).

Definition 20.32. Let F and G be two presheaves on X. We say that

F is a subpresheaf of G if for every open set U ⊂ X, F(U) ⊂ G(U),

and for all U ⊂ V open sets the restriction maps F(V ) → F(U) are

induced by the restriction maps G(V )→ G(U).

Thus if F is any presheaf of S-valued functions on X then F is a

subpresheaf of the presheaf of all S-valued functions on X.

Examples 20.33. Let us see some standard examples of presheaves

that will be relevant to this course.
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(i) Let X be a topological space and take S = R. Let CX denote the

presheaf that assigns to an open set U ⊂ X the set of continuous

real-valued functions on X:

CX(U) := C(U,R) = {f : U → R continuous} .

CX is not just a presheaf of sets, but a presheaf of R-algebras

(and thus also a presheaf of rings and (infinite-dimensional) vec-

tor spaces).

(ii) We can also consider differentiable functions. Take X = R and let

F(U) = C∞(U) denote the set of all smooth functions U → R.

This is a subpresheaf of CR. We can think of differentiation as a

morphism D : F → F . This is a morphism of presheaves of vector

spaces, since

D(af + bg) = af ′ + bg′ = aD(f) + bD(g)

but it is not a morphism of presheaves of algebras, since

D(fg) = fg′ + f ′g 6= D(f)D(g).

(iii) More generally, let M be a smooth manifold. Then the assignment

U 7→ C∞(U) is a presheaf of R-algebras on M . As before, differ-

entiation is a morphism of presheaves of vector spaces, but not of

algebras. We normally denote this presheaf by C∞M .

(iv) Let π : E → M be a vector bundle. Then U 7→ Γ(U,E) is a presheaf

of (infinite-dimensional) vector spaces on M . It is not a presheaf of Unless E is an algebra bundle, cf.

Definition 19.29.algebras, since in general there is no way to multiply two sections

together. We usually denote this presheaf by EE .

(v) Let X be any topological space and let S be any set. Let F(U)

denote the set of all constant functions U → S. Since a constant

function f : U → S can be identified with its image s := f(U),

one can simply think of F(U) as being equal to S itself. In this

case, all restriction maps are the identity map idS . We call this the

constant presheaf on X with values in S.

Let us now introduce a sheaf, which is a presheaf with an additional

property.

Definition 20.34. Let F be a presheaf on X (of sets, rings, groups,

etc.). We say that F is a sheaf if the following condition is satisfied:

for any open set U ⊂ X and any open cover {Ua | a ∈ A} of U , if we

are given a collection sa ∈ F(Ua) such that

sa|Ua∩Ub = sb|Ua∩Ub , ∀ a, b ∈ A such that Ua ∩ Ub 6= ∅, (20.6)

then there exists a unique s ∈ F(U) such that s|Ua = sa for all a ∈ A.

Remark 20.35. Taking U = ∅ and choosing the covering with empty

index set A = ∅ shows that if F is a sheaf then F(∅) is a set consisting

of one element.
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A morphism ζ : F → G of sheaves is simply a morphism of the

underlying presheaves, and we denote by Sh(X; C) the category of

sheaves on X with values in C.

Remark 20.36. If we start with a presheaf of functions, as in Def-

inition 20.31, the condition (20.6) can be phrased in a slightly sim-

pler fashion: if F is a presheaf of S-valued functions on X then F is

a sheaf if and only if for any open set U ⊂ X and any open cover

{Ua | a ∈ A} of U , if f : U → S is any function such that f |Ua ∈ F(Ua)

for each a ∈ A, then f ∈ F(U).

This reformulation makes it clear that the presheaf CX of continu-

ous functions on a topological space is actually a sheaf.

Proposition 20.37. Let M be a smooth manifold. Then C∞M is a

sheaf. More generally, if π : E → M is any vector bundle over M then

EE is a sheaf.

Not everything is a sheaf however: the presheaf of constant func-

tions from part (v) of Example 20.33 is not a sheaf if X contains two

disjoint non-empty open subsets and S has more than one element. Exercise: Why?

There is a natural way to turn a presheaf into a sheaf. This proce-

dure is called the sheafification of a presheaf. The definition is rather

complicated, and for our purposes unimportant (since the relevant

presheaves in this course are already sheaves thanks to Proposition

20.37). Thus we will content ourselves with giving the definition only

in the special case of a presheaf of functions.

Proposition 20.38. Let X be a topological space and let S be a set.

Suppose F is a presheaf of S-valued functions on X. Let

F̃(U) :=
{
f : U → S |there exists an open covering {Ua | a ∈ A}

of U such that f |Ua ∈ F(Ua) for all a ∈ A.
}

Then F̃ is a sheaf and the inclusion F(U) ↪→ F̃(U) induces a mor-

phism of presheaves ı : F → F̃ .

Proof. This is clear from the reformulation of the sheaf condition

given in Remark 20.36 – we simply added in all the functions that

were needed in order for F to be a sheaf.

Remark 20.39. If F already was a sheaf, then clearly F = F̃ . Indeed,

in this case all the functions we added were already in F .

Example 20.40. Let F be the presheaf of constant S-valued func-

tions on X. As we have remarked before, this is typically not a sheaf.

However it is very easy to describe the sheaf obtained from F via

Proposition 20.38. Indeed, a little thought shows that the sheaf F̃ is

exactly the locally constant functions on S:

F̃(U) = {f : U → S | f is locally constant} .
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Remark 20.41. The sheafification can be defined via a universal

property (compare Lemma 19.2): Let F be a presheaf on X. The

sheafification F̃ and the morphism ι : F → F̃ of presheaves has the

property that if G is any sheaf on X and ζ : F → G is any morphism of

presheaves, then there exist a unique morphism of sheaves ζ : F̃ → G
such that the following diagram commutes:

F F̃

G

ı

ζ ζ̃

As such, via abstract nonsense, the sheafification is unique up to iso-

morphism.

We now move onto discussing the stalk of a presheaf. This gener-

alises the notation of a germ of a function that we discussed in Lecture

2.

Definition 20.42. Let F be a presheaf on X, and let x ∈ X. We

define the stalk of F at x to be:

Fp := {(U, s) | U is a neighbourhood of p, s ∈ F(U)}
/
∼

where (U, s) ∼ (V, t) if there exists a neighbourhood W ⊂ U ∩ V such

that s|W ≡ t|W .

Thus for any neighbourhood U of p there exists a canonical map

F(U)→ Fp that sends s to the equivalence class of (U, s) in Fp, which

we denote by s.

Lemma 20.43. Let ζ : F → G be a morphism of presheaves. Then for

each x ∈ X there is a well-defined map ζp : Fp → Gp defined as follows:

if s ∈ Fp is represented by (U, s), then we declare that (U, ζU (s)) is a

representative of ζp(s). Thus the following diagram commutes:

F(U) Fp

G(U) Gp

s 7→s

ζU ζp

t 7→t

Proof. We need only check this is well-defined. Suppose (U, s) ∼ (V, t).

Then there exists W ⊂ U ∩ V such that s|W ≡ t|W . Since ζ is a

presheaf morphism, one has that

ζU (s)|W = ζW (s|W ) = ζW (t|W ) = ζV (t)|W .

Thus (U, ζU (s)) ∼ (V, ζV (t)).

Remark 20.44. A more categorical way to define stalks is the fol-

lowing: given p ∈ X, let Openp(X) denote the full subcategory of
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Open(X) (cf. Remark 20.30) consisting of neighbourhoods of p. Then

if F is a presheaf on X, one has

Fp = lim←−F(U)

where the filtered colimit runs over Openp(X). Similarly if ζ : F → G
is a morphism of presheaves then

ζp = lim←− ζ
U .

If F is a presheaf of groups, or rings, or modules, etc, then the

stalks also inherit that structure. We saw this in the concrete example

where F = C∞M just after Definition 2.7. As another example, suppose

F is a sheaf of groups. Then Fp is also a group, where we define the

group law as follows: if s is represented by (U, s) and t is represented

by (V, t), then we declare s · t to be the element represented by (U ∩
V, s|U∩V · t|U∩V ).

Remark 20.45. More generally, if C is a category in which filtered

colimits exist then for any p ∈ X there is a functor PSh(X; C) → C

given by F 7→ Fp.

Let us now look at some operations on sheaves.

Definition 20.46. Let U be an open set of X. Then if F is any

presheaf on X then we can define a presheaf F|U on U by setting

F|U (V ) := F(V ) for V ⊂ U open. If F is a sheaf then so is F|U .

Definition 20.47. Let ϕ : X → Y be a continuous map from one

topological space to another. Suppose F is a presheaf on X. We define

a presheaf ϕ∗(F) on Y by declaring that

ϕ∗(F)(U) := F(ϕ−1(U)), U ⊂ Y open.

We call ϕ∗(F) the direct image of F under ϕ. If ζ : F → G is a mor-

phism of presheaves on X then ϕ∗(ζ) : ϕ∗(F) → ϕ∗(G) is a morphism

on presheaves on Y , where

ϕ∗(ζ)U := ζϕ
−1(U) : ϕ∗(F)(U) = F(ϕ−1(U))→ G(ϕ−1(U)) = ϕ∗(G)(U).

In this way we get a functor from presheaves on X to presheaves on

Y . If F is a sheaf on X then it is clear that ϕ∗(F) is a sheaf on Y .

Definition 20.48. A continuous ringed space consists of a pair

(X,F) where X is a topological space and F is a subsheaf of the

sheaf CX of R-algebras from part (i) of Example 20.33. Explicitly, this

means:

• F is a sheaf and F(U) ⊂ C(U,R) for each open set U ⊂ X.

• If f, g ∈ F(U) and a, b ∈ R then af + bg and fg both belong to

F(U).

Remark 20.49. The name “continuous ringed space” is not quite

standard. In algebraic geometry, given a commutative ring R, one
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studies the more general notion of a ringed space, which is defined

to be a pair (X,F), where X is a topological space and F is a sheaf

of commutative, associative and unital R-algebras on X. Thus what I

call a “continuous ringed space” is the special case where R = R and

F is a subalgebra of the sheaf of continuous functions on X.

Algebraic geometers often restrict to a special class of ringed spaces,

called locally ringed spaces, which are ringed spaces (X,F) with

the additional property that the stalk Fp is a local ring for every point

p ∈ X (i.e. it has a unique maximal ideal). All continuous ringed

spaces in the sense of Definition 20.48 are locally ringed spaces; see

Lemma 2.15.

Definition 20.50. Let (X,F) and (Y,G) be two continuous ringed

spaces. A morphism of continuous ringed spaces is a continuous

map ϕ : X → Y with the following property:

f ∈ G(U) ⇒ f ◦ ϕ ∈ F(ϕ−1(U)), for all open U ⊂ Y. (20.7)

Property (20.7) implies there is a well-defined sheaf morphism G →
ϕ∗(F) given by

f ∈ G(U) 7→ f ◦ ϕ ∈ ϕ∗(F)(U).

An isomorphism of continuous ringed spaces is a homeomor-

phism ϕ such that both ϕ and ϕ−1 are morphisms of continuous

ringed spaces.

We will now use the notion of a continuous ringed space to give an

equivalent definition of a manifold. This definition is more in the spirit

of algebraic geometry, and it has several advantages over the standard

one, as we will shortly explain.

Definition 20.51. Let (M,F) be a continuous ringed space. We say

(M,F) is a smooth ringed space of dimension n if for every point

p ∈ M there exists a neighbourhood U of p and a homeomorphism

x : U → O, where O is some open subset of Rn, such that σ defines an

isomorphism of continuous ringed spaces

(U,F|U ) ∼= (O, C∞O ).

The next theorem tells us that this really is an alternative way to

define a manifold.

Theorem 20.52. Let M be a smooth manifold of dimension n. Then

(M, C∞M ) is a smooth ringed space of dimension n. Conversely, assume

that (M,F) is a smooth ringed space, and assume in addition that M

is Hausdorff and second countable. Then there exists a unique smooth

structure on M such that F becomes the sheaf C∞M .

The proof is easy: one direction is clear from the definition of a

smooth function on a manifold (Definition 2.1), and for the other

direction we (work a bit and then) apply Proposition 1.17.

Remark 20.53. In many ways, starting Lecture 1 by defining a man-

ifold via Definition 20.51 would have been more efficient. Here are

some reasons why:
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(i) There is no need to worry about equivalence classes of smooth

atlases (cf. Remark 1.12).

(ii) The definition of what it means for a continuous map ϕ : (M, C∞M )→
(N, C∞N ) between two smooth manifolds to be smooth is much

cleaner: it simply has to be a morphism of continuous ringed

spaces.

(iii) The definition of a tangent vector as a derivation on the space of

germs (i.e. the stalks of the sheaf C∞M ) is far more natural.

(iv) This algebraic approach dramatically reduces the need to use local

coordinates, which are messy and irritating.

Nevertheless, the best part of differential geometry is the “geometry”,

and this algebraic approach deletes most of said geometry. So we will

not pursue it beyond this lecture.

We conclude this lecture by giving a sheaf-theoretic definition of a

vector bundle. This will also allow us to reinterpret the Hom-Gamma

Theorem 20.25 in a more algebraic way. First, some preliminary defi-

nitions.

Definition 20.54. Let (X,F) be a continuous ringed space. Let M
be a sheaf of abelian groups on X, and assume in addition that for

every open set U ⊂ X, the abelian group M(U) has the structure of

an F(U)-module, and moreover the restriction morphisms respect this

structure, ie.

resVU (fs) = resVU (f) resVU (s), ∀ f ∈ F(V ), s ∈M(V ).

Then we say that M is a sheaf of F-modules. A morphism ζ from

one sheaf M of F-modules to another sheaf N of F-modules is one

such that each map ζU : M(U) → N (U) is F(U)-linear. We call such

a ζ an F-morphism of sheaves.

Here is an example.

Example 20.55. Let π : E → M be a vector bundle. Then the sheaf

EE of sections of E is a sheaf of C∞M -modules. Indeed, this is just a

fancy way of rephrasing Lemma 20.9.

We can also rephrase some of the results from the previous lecture.

Corollary 20.56. Let π1 : E1 → M and π2 : E2 → M , and suppose

ζ : Γ(E1) → Γ(E2) is an R-linear operator. Then ζ is a local operator

in the sense of Definition 20.16 if and only if ζ = ζM for a morphism

of sheaves ζ : EE1
→ EE2

.

Proof. This is Proposition 20.19.

Corollary 20.57. Let π1 : E1 → M and π2 : E2 → M be two vector

bundles over M . Suppose ζ : EE1
→ EE2

is a C∞M -morphism of sheaves.

Then ζM : Γ(E1)→ Γ(E2) is a point operator in the sense of Definition

20.16.
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Proof. This is Theorem 20.20.

Here is another more abstract example of an F-module.

Example 20.58. Let (X,F) be a continuous ringed space. Let n ∈ N.

Then the sum

Fk(U) := F(U)⊕ · · · ⊕ F(U)︸ ︷︷ ︸
n copies

is a free F-module of rank k.

More generally, if M is any F-module over X then we say that M
is locally free of rank n if for any p ∈ X there exists a neighbour-

hood U of p and an F|U -isomorphism of sheaves M|U ∼= Fk. If M
is locally free of rank n then with a little work one can show that the

stalk Mp is a free Fp-module of rank n.

Example 20.59. Let π : E → M be a vector bundle of rank n. Then

the sheaf EE is locally free of rank n. Indeed, this follows from the fact

that for any p ∈ M , there exists a neighbourhood U of p such that E

admits a local frame (ei). Then any s ∈ Γ(U,E) can be written as a

s = f iei, ai ∈ C∞(U),

and the correspondence s 7→ (f1, . . . , fn) sets up an isomorphism EE |U
with (C∞M |U )n.

Just as in Theorem 20.52, it is actually possible to work backwards

and define a vector bundle this way.

Theorem 20.60. Let M be a smooth manifold and let M be a sheaf

of locally free C∞M -modules of rank n. Then there exists a vector bun-

dle π : E → M and a C∞M -isomorphism of sheaves from M to EE .

Moreover E is unique up to vector-bundle isomorphism.

Proof (sketch). The stalk FpM of C∞M is a local ring with maximal

ideal mp equal to the kernel of the evaluation map. The stalk Mp is a See Lemma 2.15.

free Fp-module of rank n. Thus if we set

Ep :=Mp

/
mpMp

then Ep is a vector space of dimension n. Now set E =
⊔
p∈M Ep. If

p ∈ M and U ⊂ M is a neighbourhood such that M|U ∼= (C∞M |U )n

then this gives us a basis {e1(x), . . . , ek(x)} of Ep for every p ∈ U , and

thus a local frame for E. This gives us a bundle chart via (20.2). We

use this to define a fibre bundle structure on E via Remark 16.5. The

transition functions arising from a different choice of local frame near

p are linear by assumption, and thus we have built a vector bundle.

Remark 20.61. Theorem 20.60 tells us that there is a one-to-one cor-

respondence (up to isomorphism) between vector bundles and locally

free sheaves. From the point of view of categories, this gives us a way

to go from an object of the category of vector bundles to an object of

the category of finite rank locally free sheaves. A souped-up version of

Hom Γ Theorem from the previous lecture allows us to extend this to
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morphisms too: i.e. a vector bundle homomorphism E → F is equiv-

alent to an C∞M -morphism of sheaves. This allows us to conclude the

following result: there is an equivalence of categories between the cat-

egory of vector bundles over M and the category of finite rank locally

free C∞M -modules.
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LECTURE 21

Tensor Fields

Today we investigate sections of the tensor bundles Th,k(TM). Such

sections play a special role in differential geometry, and they are clas-

sically referred to as tensor fields. Tensor fields can be thought of

as a generalisation of vector fields – indeed, a tensor field of type

(h, k) = (1, 0) is exactly a vector field. We already briefly met tensor

fields in Remark 8.17 – one of the goals of today’s lecture is to fill in

the details from this remark.

Definition 21.1. A tensor field of type (h, k) on M is a section of

Th,k(TM). We normally use the special notation Th,k(M) for tensor

fields. The space of sections Th,k(U) := Γ(U, Th,k(TM)) is defined

similarly; these are the tensor fields of type (h, k) over U . Let us un-

pack this a bit. The bundle Th,k(TM) is the bundle whose fibre over

p ∈M is

Th,k(TpM) := TpM ⊗ · · · ⊗ TpM︸ ︷︷ ︸
h copies

⊗
k copies︷ ︸︸ ︷

T ∗pM ⊗ · · · ⊗ T ∗pM.

If A ∈ Th,k(M) then we can think of the value of A at p, which we

write either as A(p) or Ap (the latter is preferred if there are many

variables) as a multilinear map

Ap : T ∗pM × · · · × T ∗pM︸ ︷︷ ︸
h copies

×
k copies︷ ︸︸ ︷

TpM × · · · × TpM → R

thanks to Proposition 19.8.

A tensor field of type (1, 0) is just a vector field: in this case we

think of X(p) : T ∗pM → R as the linear map given by X(p)(λ) :=

λ(X(p)). If A ∈ Th,k(M) and (U, x) is a chart on M then locally we

can write Expressions of this form are the main

reason we introduced the Einstein
Summation Convention!A = Ai1···ihj1···jk

∂

∂xi1
⊗ · · · ⊗ ∂

∂xih
⊗ dxj1 ⊗ · · · ⊗ dxjk

where the function Ai1···ihj1···jk ∈ C
∞(U) is defined by

Ai1...ihj1...jk
(p) = Ap

(
dxi1p , . . . , dx

ih
p ,

∂

∂xj1

∣∣∣
p
, . . . ,

∂

∂xjk

∣∣∣
p

)
.

If A ∈ Th,k(U) and B ∈ Th1,k1(U) then we can form their tensor

product

A⊗B ∈ T h+h1,k+k1(U)

which is defined pointwise via Definition 19.19, see (19.3) and (19.4).

This means that if we set Warning: T(M) is not the space of
sections of a vector bundle, as the

tensor algebra T̃E of a vector bundle

is not a vector bundle, cf. Remark
19.20.

T(U) :=
⊕
h,k≥0

Th,k(U),
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then T(U) is not just a module over the ring C∞(U) but actually

an algebra. By a slight abuse of language, we call T(M) the tensor

algebra of M .

Definition 21.2. Let ζ : T(M) → T(N) be an R-linear map. We say

that ζ has degree (i, j) ∈ Z2 if Here i and j can be negative; we use

the convention that Th,k(TM) = {0}
if either h < 0 or k < 0.ζ

(
Th,k(M)

)
⊂Th+i,k+j(N)

In the case M = N , we say that such an ζ is a local operator,

respectively a point operator, if the restriction of ζ to each Th,k(M)

is a local, respectively a point, operator.

Remark 21.3. As in (19.4), strictly speaking the tensor A⊗B defined

above needs its factors rearranging. If for instance A = X1 ⊗ ω1

and B = X2 ⊗ ω2 for vector fields Xi and 1-forms ωi, then A ⊗ B i.e. ωi is a tensor of type (0, 1).

should really be written as X1 ⊗ X2 ⊗ ω1 ⊗ ω2 (so that the vector

field factors come first). In practice, this is inconvenient, and so we

will often not bother and just keep the factors unchanged, thus writing

A ⊗ B = X1 ⊗ ω1 ⊗ X2 ⊗ ω2. This is harmless, since it was merely a

convention to put the vector fields first (cf. Corollary 19.16).

A differential form is a section of the exterior algebra bundle of the

cotangent bundle.

Definition 21.4. A differential k-form (often simply called “a

k-form”) on M is a section of
∧k
T ∗M . We use the special notation

Ωk(M) for the space of differential k-forms. If ω ∈ Ωk(M) and p ∈ M
then we can think of ωp as an alternating map

ωp : TpM × · · · × TpM︸ ︷︷ ︸
k copies

→ R,

thanks to Proposition 19.24.

If ω ∈ Ωk(M) and (U, x) is a chart on M then locally we can write

ω = ωi1···ikdx
i1 ∧ · · · ∧ dxik (21.1)

where ωi1...ik ∈ C∞(U). We define

Ω(M) =
⊕

0≤k≤m

Ωk(M),

with Ω(U) defined similarly. Thus an element of Ω(M) is a sum∑m
i=0 ωi where ωi ∈ Ωi(M). Since an alternating multilinear map

is (in particular) a multilinear map, we see that any differential k-

form may be regarded as a tensor of type (0, k). For k = 1 this is an

equality (since in dimension one every linear map is alternating):

Ω1(M) = T0,1(M)

But for k ≥ 2, there are (many) multilinear maps that are not alter-

nating, and thus not every tensor of type (0, k) is a differential form.

Ωk(M) ( T0,k(M).
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As above, an R-linear map ζ : Ω(M)→ Ω(N) is said to have degree h

if ζ(Ωk(M)) ⊂ Ωh+k(M).

Identifying tensors: For low values of (h, k) we have various

different notations for Th,k(M).

• T0,0(M) = C∞(M).

• T1,0(M) = X(M).

• T0,1(M) = Ω1(M).

• T1,1(M) = Γ(End(TM)).

The following theorem tells us how to recognise tensor fields and

differential forms “in the wild”.

Theorem 21.5 (The Tensor and Differential Form Criterion). Let M

be a smooth manifold and let U ⊂M be a non-empty open set.

(i) There is a canonical identification between Th,k(U) and C∞(U)-

multilinear functions

Ω1(U)× · · · × Ω1(U)︸ ︷︷ ︸
h copies

×
k copies︷ ︸︸ ︷

X(U)× · · · × X(U)→ C∞(U).

(ii) There is a canonical identification between Ωk(U) and alternating

C∞(U)-multilinear functions

X(U)× · · · × X(U)︸ ︷︷ ︸
k copies

→ C∞(U).

Proof. The case (h, k) = (1, 0) or (h, k) = (0, 1) of part (i) follows

from the Hom-Gamma Theorem 21.5. Indeed, suppose for definiteness

(h, k) = (0, 1). We apply the Hom-Gamma Theorem with E = TM

and F = M × R the trivial bundle. Then in the notation of (20.5),

Hom
(
Γ(E),Γ(F )

)
=
{
C∞(M)-linear maps X(M)→ C∞(M)

}
.

and

Γ
(
Hom(E,F )

)
= Γ(E∗ ⊗ R)

= Γ(E∗)

= T0,1(M),

where the first equality used Corollary 19.14 and the second equality

uses the fact that for any real vector space V there is a canonical

isomorphism V ∼= V ⊗ R.

The general case for part (i) can be proved by induction on h + k;

the details of this argument are left to you on Problem Sheet I. The

proof of part (ii) proceeds along similar lines, and is also omitted.
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We will typically suppress this isomorphism from our notation,

and thus interchangeably regard a tensor field A over U either as

an element of Th,k(U), or as an appropriate multilinear map, and

similarly with differential forms. In the bonus section below we explain

why Theorem 21.5 could also be called a “Tensor-Gamma Theorem”.

Remark 21.6. Every differential geometer should at one point in

their life compute tensor fields in local coordinates. This is left as a Once is enough.

wholesome exercise for you to enjoy on Problem Sheet I.

We will return to differential forms next lecture. For now we con-

centrate on tensors. Let us now think all the way back to Lecture 8. If

ϕ : M → N is a diffeomorphism, we defined two isomorphisms

ϕ∗ : C∞(M)→ C∞(N), ϕ∗ : X(M)→ X(N).

The vector field ϕ∗X is sometimes called the push forward of X by

ϕ, and the map ϕ∗ is called a push forward map.

Since T0,0(M) = C∞(M) and T1,0(M) = X(M), we can think

of both of these maps ϕ∗ as being defined on tensors of type (0, 0)

or (1, 0). As hinted at in Remark 8.17, these two maps ϕ∗ are both

special cases of an R-linear map between the tensor algebras:

ϕ∗ : T(M)→T(N)

which preserves type. i.e. is of type (0, 0).

Remark 21.7. The same is true of the Lie derivative. We will come

back to this next lecture.

We shall take a slightly circuitous route to defining the map ϕ∗ and

first define a type-preserving map going the other way The upper star indicates that ϕ 7→ ϕ∗

is contravariant, i.e. it reverses the
direction of the arrows.ϕ∗ : T(N)→T(M).

In fact, some of this construction works for arbitrary smooth maps

(not necessarily diffeomorphisms), and we cover this first as a special

case. This will be useful next lecture when we talk about pullbacks of

differential forms.

Definition 21.8. Let ϕ : M → N be smooth (not necessarily a

diffeomorphism). Let k ≥ 1 and suppose A ∈ T0,k(N) is a (0, k)

tensor field on N . We define the pullback of A by ϕ, written ϕ∗A, to

be the tensor field on M defined pointwise as follows: for p ∈ M and

ξ1, . . . ξk ∈ TpM , set

(ϕ∗A)p(ξ1, . . . , ξk) := Aϕ(p)

(
Dϕ(p)ξ1, . . . , Dϕ(p)ξk

)
,

We extend this to cover the case k = 0 by setting

ϕ∗f := f ◦ ϕ, f ∈ C∞(N).

It is immediate that ϕ∗ is R-linear. Moreover if f ∈ C∞(N) then

ϕ∗(fA) = (ϕ∗f)(ϕ∗A),
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Note also that if ψ : L→M then (ϕ ◦ ψ)∗ = ψ∗ ◦ ϕ∗. If we consider all

these maps ϕ∗ at once we get a type-preserving operator

ϕ∗ :
⊕
k≥0

T0,k(N)→
⊕
k≥0

T0,k(M)

which moreover is an algebra morphism, i.e.

ϕ∗(A⊗B) = ϕ∗A⊗ ϕ∗B.

To extend this definition to tensors of arbitrary type, we need to

assume that ϕ is a diffeomorphism. First let us introduce the notion of

a cotangent lift.

Definition 21.9. Let ϕ : M → N be a diffeomorphism. Then

Dϕ(p) : TpM → Tϕ(p)N is a linear isomorphism for each p, and thus

we can speak of its inverse Dϕ(p)−1 : Tϕ(p)N → TpM . Thus there is a This coincides with the differential of
ϕ−1 at the point ϕ(p).well-defined map

Dϕ† : T ∗M → T ∗N,

called the cotangent lift defined for p ∈M , λ ∈ T ∗pM and ξ ∈ Tϕ(p)N

by (
Dϕ†(p)λ

)
(ξ) := λ

(
Dϕ(p)−1ξ

)
The cotangent lift makes the following diagram commute:

T ∗M T ∗N

M N

Dϕ†

π π

ϕ

Thus Dϕ† is a vector bundle morphism along ϕ.

We emphasise Dϕ† is only defined for diffeomorphisms.

Definition 21.10. Now suppose ϕ : M → N is a diffeomorphism.

Then we can define the pullback tensor ϕ∗A ∈ Th,k(M) for a tensor

A ∈Th,k(N) of arbitrary type (h, k) by setting

ϕ∗Ap(λ1, . . . , λh, ξ1, . . . , ξk)

:= Aϕ(p)

(
Dϕ†(p)λ1, . . . , Dϕ

†(p)λh, Dϕ(p)ξ1, . . . , Dϕ(p)ξk

)
for p ∈M , λ1, . . . , λh ∈ T ∗pM and ξ1, . . . , ξk ∈ TpM .

Remark 21.11. More generally, if ϕ : U ⊂ M → N is a locally defined

map which is a diffeomorphism onto its image V = ϕ(U) then we can

still use ϕ to pull back tensor fields of arbitrary type from V to U .

Thus when ϕ is a diffeomorphism there is a well-defined operator

ϕ∗ : T(N)→T(M) which is an algebra morphism, that is,

ϕ∗(A⊗B) = ϕ∗A⊗ ϕ∗B. (21.2)
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Summary:

• A tensor of type (0, k) can be pulled back by an arbitrary

smooth map.

• A tensor of type (h, k) for h > 0 can only be pulled back by

a diffeomorphism.

So much for pullbacks. What about push forwards? The answer is

simple:

Definition 21.12. Let ϕ : M → N be a diffeomorphism. We define

the push forward map

ϕ∗ : T(M)→T(N)

by

ϕ∗ := (ϕ−1)∗.

Thus the push forward is the pullback of the inverse.

In the special case h = k = 0, the map ϕ∗ sends a function f to

f ◦ ϕ−1. In the special case h = 1 and k = 0, one has

(ϕ∗X)(p) = Dϕ(ϕ−1(p))X(ϕ−1(p)),

and thus in both cases these extend the definitions from Lecture 8.

Bonus Material for Lecture 21

In Lecture 19 we defined tensor products for finite-dimensional real

vector spaces. However everything would have worked (without any

changes at all) if we worked with finite rank modules over a fixed

commutative ring R. A more interesting question is to what extent the

finite rank hypothesis was needed. Indeed, suppose V is a module over

a commutative ring R. The dual module is defined V ∗ = HomR(V,R),

and the space Multh,k(V ) is then defined be the set of multilinear

maps

V × · · · × V︸ ︷︷ ︸
h copies

×
k copies︷ ︸︸ ︷

V ∗ × · · · × V ∗ → R.

One can then ask the question: is it true that Th,kV and Mults,r(V )

are isomorphic modules?

Th,kV
?∼= Multk,h(V ). (21.3)

The answer in general is no. Nevertheless (21.3) it is true for some

infinite-rank modules.
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Definition 21.13. Let R be a commutative ring and V an R-module. All rings are assumed to be unital.

We say that V is projective if for any R-module Z, if we are given a

module homomorphism f : V → Z and a surjective module homomor-

phism g : W → Z from some other R-module W , there exists a module Warning: We do not require h to

be unique. This is not a universal

property!
homomorphism h : V →W such that the following commutes:

W

V Z

gh

f

On Problem Sheet I you will prove the following generalisation of

Proposition 19.8.

Proposition 21.14. Let R be a commutative ring and let V be a

finitely generated projective R-module. Then for all h, k ≥ 0,

Th,kV ∼= Multk,h(V ).

Moreover, as you will also prove on Problem Sheet I, the space of

sections of a vector bundle satisfy the hypotheses of Proposition 21.14:

Proposition 21.15. Let π : E → M be a vector bundle. For any

open set U ⊂ M , the space Γ(U,E) is a finitely generated projective

C∞(U)-module.

This gives us the following cute corollary.

Corollary 21.16. The operators Γ and Th,k also “commute”. That

is, there is an isomorphism of C∞(M)-modules

Γ
(
Th,k(TM)

) ∼= Th,k
(
Γ(TM)

)
,

Proof. The Tensor Criterion Theorem 21.5 tells us that

Th,k
(
X(U)

) ∼= Multk,h
(
X(U)

)
.

Combining this with Propositions 21.14 and 21.15 we obtain

Th,k(U) ∼= Th,k
(
X(U)

)
,

which is just compact notation for

Γ
(
U, Th,k(TM)

) ∼= Th,k
(
Γ(U, TM)

)
.



Will J. Merry

LECTURE 22

The Lie Derivative Revisited

In this lecture we introduce the notion of a tensor derivation on a

manifold. We show that the Lie derivative is a tensor derivation, and

thus unify the two definitions of the Lie derivative from Definition

10.1.

Definition 22.1. Let V be a vector space and fix h, k ≥ 0. Choose

i ≤ h and j ≤ k. The (i, j)th contraction, written Ci,j is the linear

operator

Ci,j : Th,kV → Th−1,k−1V

defined on decomposable elements by feeding the ith V -factor to the

jth V ∗ factor:

Ci,j(v1 ⊗ · · · ⊗ vi ⊗ · · · ⊗ vh ⊗ λ1 ⊗ · · · ⊗ λj ⊗ · · · ⊗ λk) :=

λj(vi) · v1 ⊗ · · · ⊗ vi−1 ⊗ vi+1 ⊗ · · · ⊗ λj−1 ⊗ λj+1 ⊗ · · · ⊗ λk

and then extending by linearity.

Lemma 22.2. Assume dimV = n. Let A ∈ Th,kV , and regard

A as defining an element of Multk,h(V ) as in Proposition 19.8. Let

{e1, . . . , en} be a basis of V with dual basis {e1, . . . , en} of V ∗. Then if

we regard Ci,jA also as an element of Multk−1,h−1(V ), one has

(Ci,jA)
(
w1, . . . , wk−1, η

1, . . . , ηh−1
)

=

n∑
l=1

A
(
w1, . . . , el

jth position
, . . . , wk−1, η

1, . . . , el
ith position

, . . . ηh−1
)
.

Proof. It suffices to prove the equality for decomposable elements. Let

us temporarily add a tilde to denote the multilinear map correspond-

ing to a given tensor. For simplicity assume (h, k) = (2, 3), and assume The general case is only notationally
more complicated.A = v1⊗v2⊗λ1⊗λ2⊗λ3. Then as in Remark 19.12, the corresponding

map Ã ∈ Mult3,2(V ) is given by

Ã(w1, w2, w3, η
1, η2) = η1(v1) η2(v2)λ1(w1)λ2(w2)λ3(w3).

Take (i, j) = (1, 2). Then C1,2A = λ2(v1) · v2 ⊗ λ1 ⊗ λ3. We compute We include the summation signs to
minimise the risk of confusion.

(C1,2Ã)
(
w1, w2, η

1
) def

=

n∑
l=1

Ã(w1, el, w2, e
l, η1)

=

n∑
l=1

el(v1) η1(v2)λ1(w1)λ2(el)λ
3(w2)

=

(
n∑
l=1

el(v1)λ2(ei)

)
η1(v2)λ1(w1)λ3(w2).

But
n∑
l=1

el(v1)λ2(el) = λ2(v1),
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and thus

C1,2Ã = C̃1,2A

which is what we wanted to prove.

A contraction Ci,j extends to define an operator on tensor fields in

an obvious fashion. For instance, if A ∈ T2,1(M) is the decomposable

tensor X ⊗ Y ⊗ ω then C1,1A = ω(X)Y .

Lemma 22.3. For any 1 ≤ i ≤ h and 1 ≤ j ≤ k, the contraction Ci,j

defines a point operator Th,k(M)→Th−1,k−1(M).

Proof. We need only check the point property, but this is immediate

from the definition: if Ap = 0 then (Ci,jA)p = 0.

Definition 22.4. Let ζ : T(M) → T(N) be an operator which pre-

serves type. We say that ζ commutes with all contractions if for

any any 1 ≤ i ≤ h and 1 ≤ j ≤ k one has

ζ ◦ Ci,j = Ci,j ◦ ζ

as maps Th,k(M)→Th−1,k−1(N).

Example 22.5. Let ϕ : M → N be a diffeomorphism. Then ϕ∗ and ϕ∗

both commute with all contractions.

Here is the main definition for today.

Definition 22.6. A tensor derivation is an R-linear operator

ζ : T(M) → T(M) that preserves type, commutes with all contrac-

tions, and satisfies

ζ(A⊗B) = ζA⊗B +A⊗ ζB (22.1)

for all A,B ∈T(M).

We refer to (22.1) as the derivation property. Operators that

satisfy this property are automatically local operators.

Lemma 22.7. Suppose ζ : T(M) → T(M) is an R-linear map that

satisfies the derivation property. Then ζ is a local operator. Thus in

particular tensor derivations are local operators.

Proof. This is a standard argument which we have seen many times

by now. Suppose A ∈ Th,k(M) vanishes on U ⊂ M . Let p ∈ U and let

χ : M → R denote a bump function with χ(p) = 1 and supp(χ) ⊂ U .

Then ηA = χ ⊗ A vanishes identically on M , and hence by R-linearity

ζ(χ⊗A) = 0. Then by the derivation property

0 = ζ(χ⊗A)(p)

= χ(p)(ζA)(p) + (ζχ)(p)A(p)

= (ζA)(p).

As p was an arbitrary point of U , it follows that ζA vanishes on U .
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Remark 22.8. Combining Lemma 22.7 and Proposition 20.19 shows

that tensor derivations induce operators ζU : T(U) → T(U) for each

open set U ⊂ M . These operators are actually tensor derivations in

their own right: the fact that ζU commutes with contractions follows

from the fact that contractions are local operators, and the fact that

ζU satisfies the derivation property is immediate.

Lemma 22.9. Suppose ζ is a tensor derivation on M , and let U ⊂ M

be open. Fix A ∈ Th,k(U), and suppose X1, . . . , Xk ∈ X(U), and

ω1, . . . , ωh ∈ Ω1(U). Then:

ζU (A)(ω1, . . . , ωh, X1, . . . , Xk) = ζU
(
A(ω1, . . . , ωh, X1, . . . , Xk)

)
−

h∑
i=1

A
(
ω1, . . . , ζ

U (ωi), . . . , ωh, X1, . . . Xk

)
−

k∑
i=1

A
(
ω1, . . . , ωh, X1, . . . , ζ

U (Xi), . . . Xk

)
.

Proof. The (0, 0)-tensor A(ω1, . . . , ωh, X1, . . . , Xk) can be thought of

as being obtained from the (h + k, h + k) tensor A ⊗ ω1 ⊗ · · · ⊗ ωh ⊗ As in Remark 21.3, we don’t bother

to reorder the factors in this expres-
sion.

X1 ⊗ · · · ⊗Xk by repeated contractions. We write this symbolically as

A(ω1, . . . , ωh, X1, . . . , Xk) = C(A⊗ ω1 ⊗ · · · ⊗ ωh ⊗X1 ⊗ · · · ⊗Xk),

where C stands for repeated contractions. The claim now follows

by repeatedly using the fact that ζ commutes with contractions and

satisfies the derivation property.

Corollary 22.10. Suppose ζ and ξ are two tensor derivations that

agree on functions and vector fields. Then they are identical.

Proof. Let ω be a 1-form. Then by Lemma 22.9 with A = ω we see for

an arbitrary vector field X that

ζ(ω)(X) = ζ(ω(X))− ω(ζ(X))

= ξ(ω(X))− ω(ξ(X))

= ξ(ω)(X).

Since X was arbitrary, this shows that ζ(ω) = ξ(ω), and since ω

was arbitrary this shows that ζ and ξ coincide on tensors of type

(0, 1). Now for an arbitrary A, observe that Lemma 22.9 expands

ζ(A) in such a way that all the other terms are of the form ζ eating a

function, a vector field, or a 1-form. Thus ζ(A) = ξ(A) for arbitrary

A.

The next result shows how one can work backwards and build a

tensor derivation if we have something defined on functions and vector

fields with the appropriate property.

Proposition 22.11. Suppose we have a type-preserving local operator i.e. we have two local operators

ζ : T0,0(M) → T0,0(M) and
ζ : T1,0(M)→ T1,0(M).

ζ defined on smooth functions and vector fields which satisfies

ζ(fg) = ζ(f)g + fζ(g),

ζ(fX) = ζ(f)X + fζ(X)
(22.2)
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for all f, g ∈ C∞(M) and X ∈ X(M). Then ζ extends uniquely to a

tensor derivation.

Note the two conditions in (22.2) are forced if we want ζ to be a

tensor derivation, since f ⊗ g = fg and f ⊗X = fX.

Proof. Uniqueness is immediate from the previous corollary, since we

have prescribed what ζ must do to vector fields and functions. The

proof proceeds very similarly to that of Corollary 22.10: the derivation

property coupled with our requirement that ζ commutes with contrac-

tions means that at every stage we have no choice how to proceed.

Namely, we define ζ on 1-forms by setting

ζ(ω)(X) = ζ(ω(X))− ω(ζ(X)). (22.3)

The hypotheses imply that ζ : T0,1(M) → T0,1(M) is a local operator.

Next to define ζ on T1,1(M) we start with a tensor of the form X ⊗ ω.

The derivation property requires us define

ζ(X ⊗ ω) := X ⊗ ζ(ω) + ζ(X)⊗ ω.

If ζ commutes with the contraction C1,1 : T1,1(M) → C∞(M) then we

need

ζ(ω(X)) = C1,1
(
ζ(X ⊗ ω)

)
= C1,1

(
X ⊗ ζ(ω) + ζ(X)⊗ ω

)
= ζ(ω)(X) + ω(ζ(X)),

and this is true by (22.3). This also shows that (22.3) was forced – no

other choice would have worked. Now we use the formula from Lemma

22.9 to define ζ on all higher tensors. A check similar to the one we

just did shows that the resulting object is a derivation that commutes

with all contractions.

We now obtain our promised extension of the Lie derivative.

Theorem 22.12. Let X ∈ X(M). There exists a unique tensor deriva-

tion LX : T(M) → T(M) that extends the Lie derivative defined on

functions and vector fields from Lecture 8.

Lemma 22.9 tells us how to compute LXA. For instance, if A ∈
T0,k(M) then

(LXA)(Y1, . . . , Yk) = X
(
A(Y1, . . . , Yk)

)
(22.4)

−
k∑
i=1

A
(
Y1, . . . , Yi−1,LXYi, Yi+1, . . . , Yk

)
.

The next result, whose proof is deferred to Problem Sheet I, classifies

all tensor derivations.

Proposition 22.13. Let M be a smooth manifold.

(i) Suppose A ∈ T1,1(M) ∼= Γ(End(TM)). Then there exists a unique

tensor derivation ζA on M with the property that ζA(Y )(p) =

Ap(Y (p)) for any vector field Y and satisfies ζA(f) = 0 for any

function f .
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(ii) Let ξ be an arbitrary tensor derivation. Then there exists a vector

field X on M and A ∈ T1,1(M) such that ξ = LX + ζA. Thus the

space of tensor derivations on M can be identified with X(M) ×
Γ(End(TM)).

An explicit formula for the Lie derivative is given by the following

result.

Proposition 22.14. Let X ∈ X(M) with flow Φt. Then for any tensor

field A, the Lie derivative LXA is given by:

LXA :=
d

dt

∣∣∣
t=0

Φ∗tA = lim
t→0

Φ∗tA−A
t

. (22.5)

The proof of Proposition 22.14 is given in the bonus section below.

We now switch our focus back to differential forms. The following

statement is a minor variation of the the Tensor Criterion 21.5, and

the proof is left as an exercise.

Theorem 22.15 (The Differential Form Criterion). Let M be a

smooth manifold and let U ⊂ M be a non-empty open set. Then

there is a canonical identification between Ωk(U) and alternating

C∞(U)-multilinear functions

X(U)× · · · × X(U)︸ ︷︷ ︸
k copies

→ C∞(U).

Since an alternating multilinear map is (in particular) a multilinear

map, we see that any differential k-form may be regarded as a tensor

of type (0, k). But for k ≥ 2, there are (many) multilinear maps

that are not alternating, and thus not every tensor of type (0, k) is a

differential form. We define

Ω(M) =
⊕

0≤k≤m

Ωk(M),

with Ω(U) defined similarly. Thus an element of Ω(M) is a sum∑m
i=0 ωi where ωi ∈ Ωi(M).

Definition 22.16. If ω ∈ Ωh(M) and θ ∈ Ωk(M) then the wedge

product is the differential form ω ∧ θ ∈ Ωh+k(M) defined pointwise by

(ω ∧ θ)p = ωp ∧ θp

Since
∧k
V = 0 if k > dimV , the wedge product ω ∧ θ is zero if

h+ k > dimM . Note that by part (ii) of Proposition 19.22, one has

ω ∧ θ = (−1)hkθ ∧ ω, ω ∈ Ωh(M), θ ∈ Ωk(M)

The wedge product gives Ω(M) the structure of graded ring, and in

fact, also a C∞(M)-graded skew-commutative algebra. The “skew-commutative” refers to the

sign (−1)hk.

Here is a useful piece of linear algebra, whose proof is on Problem

Sheet J. We let Sk denote the group of all permutations on k letters.
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Definition 22.17. Let h, k ≥ 0. An (h, k)-shuffle is a permutation

% ∈ Sh+k such that

%(1) < · · · < %(h) and %(h+ 1) < · · · < %(h+ k).

We let Shuffle(h, k) ⊂ Sh+k denote the set of all (h, k)-shuffles.

Lemma 22.18. Let V be a vector space and suppose ω ∈
∧h
V ∗ and

θ ∈
∧k
V ∗. Let vi ∈ V for i = 1, . . . , h + k. Then if we identify ω with

an element of Alth(V ), θ with an element of Altk(V ), and ω ∧ θ with

an element of Alth+k(V ), one has:

(ω∧θ)(v1, . . . , vh+k) =
1

h!k!

∑
%∈Sh+k

sgn(%)ω
(
v%(1), . . . , v%(h)

)
θ
(
v%(h+1), . . . , v%(h+k)

)
or equivalently

(ω∧θ)(v1, . . . , vh+k) =
∑

%∈Shuffle(h,k)

sgn(%)ω
(
v%(1), . . . , v%(h)

)
θ
(
v%(h+1), . . . , v%(h+k)

)
.

For low values of h and k this gives an easy method to compute the

wedge product of two differential forms. For instance, we have:

Corollary 22.19. Let ω, θ ∈ Ω1(M) denote two 1-forms. Then

(ω ∧ θ)p(ξ, ζ) = ωp(ξ)θp(ζ)− ωp(ζ)θp(ξ), ∀ p ∈M, ∀ ξ, ζ ∈ TpM.

If ϕ : M → N is smooth we showed in Definition 21.8 how to

pullback a tensor A ∈ T0,k(N) to obtain a tensor ϕ∗A ∈ T0,k(M).

It is clear from the definition that if A is alternating then so is ϕ∗A.

Thus ϕ∗ restricts to define a map Ω(N)→ Ω(M). For convenience, we

state this again here:

Definition 22.20. Let ϕ : M → N denote a smooth map. Given

ω ∈ Ωk(N), we define the pullback form ϕ∗ω ∈ Ωk(M) by

(ϕ∗ω)p(ξ1, . . . , ξk) := ωϕ(p)

(
Dϕ(p)ξ1, . . . , Dϕ(p)ξk

)
.

The next lemma tells us that ϕ∗ is an algebra homomorphism.

Lemma 22.21. If ϕ : M → N is a smooth map and ω, θ ∈ Ω(N) then

ϕ∗(ω ∧ θ) = ϕ∗ω ∧ ϕ∗θ.

Proof. Immediate from Lemma 22.18 and the definition.

Note also that (just as with tensors), the pullback operation is

functorial: if ϕ : M → N and ψ : L→M then

(ϕ ◦ ψ)∗ = ψ∗ ◦ ϕ∗ (22.6)

as maps Ω(N)→ Ω(L).

Since any differential form ω ∈ Ωk(M) can be thought of a tensor of

type (0, k), we can apply the Lie derivative LX to it to obtain another

tensor of type (0, k), denoted by LXω. In fact, from Lemma 22.9 the

tensor LXω is easily seen to be alternating, and hence LXω is another



7

differential k-form. Explicitly, by (22.4) one has for ω ∈ Ω1(M) and

X,Y ∈ X(M) that

(LXω)(Y ) = X(ω(Y ))− ω([X,Y ]), (22.7)

and more generally

(LXω)(X1, . . . , Xk) = X(ω(X1, . . . , Xk))−
k∑
i=1

ω(X1, . . . , [X,Xi], . . . Xk)

(22.8)

for ω ∈ Ωk(M) and X,X1, . . . , Xk ∈ X(M).

Here is how the Lie derivative behaves with respect to the wedge

product.

Lemma 22.22. Let ω, θ ∈ Ω(M). Then

LX(ω ∧ θ) = LX(ω) ∧ θ + ω ∧ LX(θ).

Proof. Apply Proposition 22.29 with A(ω, θ) = ω ∧ θ. Strictly speaking, this is a slight

modification of Proposition 22.29 for
differential forms instead of tensors,

but the proof is exactly the same.
Remark 22.23. The Lie derivative LX gives us a way to “differen-

tiate” a tensor field (or a differential form) with respect to a vector

field, but it does not allow us differentiate a tensor field (or differen-

tial form) with respect to a single tangent vector. Indeed, the value

of LXA at a point p depends on the values of X on a whole neigh-

bourhood of p, not just on X(p). This is because X 7→ LX is not

C∞(M)-linear. For instance, if A is a 1-form ω then for X,Y ∈ X(M)

and f ∈ C∞(M),

(LfXω)(Y ) = (fX)ω(Y )− ω([fX, Y ])

= fX(ω(Y ))− ω(f [X,Y ]− Y (f)X)

= f(LXω)(Y ) + Y (f)ω(X),

where the second line used Problem D.5. The presence of the “error

term” Y (f)ω(X) shows that LfX 6= fLX .

The first topic we will cover next semester will be connections in

vector bundles and principal bundles. A connection on the tangent

bundle TM induces a covariant derivative ∇X on tensor fields associ-

ated to every vector field X. As we will see, a covariant derivative ∇X
will have the nice property that ∇fX = f∇X . The downside it that it

requires a choice of extra structure (namely, a connection). Meanwhile

the Lie derivative is canonical. See Remark 31.7.

We conclude today’s lecture with the analogue of a tensor deriva-

tion on differential forms.

Definition 22.24. Let M be a smooth manifold and let h ∈ Z. A

graded derivation of degree h on M is a local operator ζ : Ω(M)→
Ω(M) of degree h such that if ω ∈ Ωk(M) and θ ∈ Ω(M) then

ζ(ω ∧ θ) = ζω ∧ θ + (−1)hkω ∧ ζθ. (22.9)
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We refer to (22.9) as the graded derivation property. As in

Remark 22.8, if ζ is a graded derivation and U ⊂ M is open then the

induced map ζU : Ω(U)→ Ω(U) is another graded derivation.

Example 22.25. The Lie derivative LX is a graded derivation of

degree 0 by Lemma 22.22.

Definition 22.26. A 1-form ω ∈ Ω1(U) is called exact if ω = df for

some f ∈ C∞(U).

Just as a tensor derivation is entirely determined by what it does to

functions and vector fields, a graded derivation is entirely determined

by what it does to functions and exact 1-forms.

Proposition 22.27. Suppose ζ and ξ are two graded derivations of

the same degree h. If ζ and ξ agree on functions and exact 1-forms

then ζ = ξ.

Proof. Since a graded derivation is a local operator, by Problem J.1

it is entirely determined by all its restrictions ζU where U ⊂ M is the

domain of a chart (U, x). By (21.1), any ω ∈ Ωk(U) can be written as

a sum of elements of the form

fdxi1 ∧ · · · ∧ dxik .

Since ζ is R-linear, ζU is determined by what it does to such a term.

But by repeatedly applying (22.9), we see that ζU (fdxi1 ∧ · · · ∧ dxik)

is determined by ζU (f) and ζU (dxij ). Thus if two graded derivations

agree on functions and exact 1-forms then they are identical.

Remark 22.28. It follows directly from the definition that the space

of graded derivations of a given degree h forms a vector space (with

the caveat that the zero operator has to be regarded as a graded

derivation of all degrees). Moreover if ζ and ξ are two graded deriva-

tions of degrees h and k respectively then Exercise: Check this!

ζ ◦ ξ − (−1)hkξ ◦ ζ

is another graded derivation of degree h+ k.

Next lecture we will investigate a particularly important graded

derivation of degree +1: the exterior differential. This will lead us to

the de Rham cohomology of a manifold.

Bonus Material for Lecture 22

In this bonus section we prove Proposition 22.14. Let us temporarily

denote the right-hand side of (22.5) by L̃XA. Thus to prove Proposi-

tion 22.14 we must show that for any tensor A, one has:

LXA = L̃XA. (22.10)

The proof of (22.10) uses the following result, which will be useful

elsewhere.
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Proposition 22.29. Let (h0, k0), (h1, k1) and (h2, k2) be three pairs

of non-negative integers. Suppose we are given a C∞(M)-bilinear

operator

A : Th0,k0(M)×Th1,k1(M)→Th2,k2(M).

Assume in addition that A has the property that if ϕ : U → V is a

local diffeomorphism between open sets of M then the corresponding

local operators

ϕ∗
(
AV (A,B)

)
= AU (ϕ∗A,ϕ∗B). (22.11)

Then for every vector field X on M , one has

L̃X
(
A(A,B)

)
= A

(
L̃XA,B

)
+A

(
A, L̃XB

)
.

The proof of Proposition 22.29 is on Problem Sheet I.

Proof of Proposition 22.14. Since Φ∗t = ((Φt)
−1)∗ = (Φ−t)∗ it follows

from the definitions that L̃X = LX on functions and vector fields.

Thus if we can show that L̃X is a tensor derivation, it will follow from

the uniqueness part of of Theorem 22.12 that LX = L̃X .

Thus we must show that L̃X is a derivation that commutes with

contractions. For this we use Proposition 22.29. Taking A(A,B) :=

A ⊗ B shows that L̃X is a derivation (note (22.11) is satisfied by

(21.2)). Similarly taking for instance A(A,B) = C1,1(A ⊗ B) shows

that

X(ω(Y )) =
(
L̃Xω

)
(Y ) + ω

(
L̃XY

)
.

More generally, taking A(A,B) = Ch,k(A ⊗ B) shows that L̃X com-

mutes with Ch,k. This completes the proof.

From now on, we will just write LX for both the operator LX from

Theorem 22.12 and the operator defined in (22.5).



Will J. Merry

LECTURE 23

The Exterior Differential

Differential forms are typically more important than tensors in geome-

try for two key reasons:

• We can differentiate them.

• We can integrate them.

We will discuss differentiation in this lecture. Integration will be cov-

ered next week. Let us motivate this by considering the special case

of a 0-form, i.e. a smooth function. If f ∈ C∞(M) then we have al-

ready defined the differential of f as the exact 1-form df ∈ Ω1(M).

Generalising this, we will define the differential of a k-form ω to be an

(k + 1)-form dω.

Here is the main result of today’s lecture.

Theorem 23.1 (The exterior differential). Let M be a smooth mani-

fold. There is a unique graded derivation d : Ω(M) → Ω(M) of degree

1 that extends the operator f 7→ df on Ω0(M) and satisfies

d ◦ d = 0. (23.1)

We call d the exterior differential operator and refer to dω

as the exterior differential of ω (often shortened to the just “the

differential of ω”). The importance of the condition (23.1) will be

explained shortly.

Warning! The words “derivative” and “differential” are of-

ten used synonymously, but – at least as far as this course is

concerned – there is an important difference. As explained

in Remark 5.3, if f is a smooth function then the derivative

Df and the differential df differ only by the dash-to-dot map.

However if ω ∈ Ωk(M) for k ≥ 1 then the derivative Dω and

the differential dω are very different objects. The latter is

an element of Ωk+1(M), whereas the former is a linear map

Dω : TM → T
∧
T ∗M !.

Our proof of Theorem 23.1 will construct d in coordinates. We

will give a coordinate-free expression for d at the end of the lecture in

Theorem 23.13.

Proof of Theorem 23.1. We prove the result in three steps.

1. We first deal with uniqueness. This is immediate from Propo-

sition 22.27, since we have specified what d does to functions and to

exact 1-forms (namely, d(df) = 0).

2. To construct d it suffices by Problem J.1 to show that for any

chart (U, x) there is a an operator dU : Ωk(U) → Ωk+1(U) satisfying
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the requirements of the theorem, which moreover has the property

that if (V, y) is another chart with U ∩ V 6= ∅ then

dU = dV , on U ∩ V. (23.2)

In this step we define an operator dU : Ωk(U) → Ωk+1(U) which

satisfies the requirements of the theorem. In the last step we will show

that (23.2) is satisfied.

To ease the notation we adopt the following shorthand: if I =

(i1, . . . , ik) is a subset of {1, . . . ,m} with ij < ij+1 for each j =

1, . . . , k − 1 then we set:

dxI := dxi1 ∧ · · · ∧ dxik .

We also define dxI := 1 if I = ∅. Thus any ω ∈ Ω(U) can be written as

a sum

ω =
∑
I

fI dx
I .

We define

dUω :=
∑
I

dfI ∧ dxI .

If ω ∈ Ωk(U) then dUω ∈ Ωk+1(U). Moreover dU is obviously R-linear

and satisfies the first bullet point by definition. Thus we need only

check that dU (dUω) = 0 and that (22.9) holds.

To establish (22.9), we may assume ω = f dxI and θ = g dxJ .

If either I or J are empty then (22.9) follows from the Leibniz rule

d(fg) = fdg + gdf . In the general case we argue as follows. Assume ω

has degree k. Then:

dU (ω ∧ θ) = dU (fg dxI ∧ dxJ)

= d(fg) ∧ dxI ∧ dxJ

= (fdg + gdf) ∧ dxI ∧ dxJ

=
(
df ∧ dxI

)
∧ (g dxJ) + (−1)k(f dxI) ∧

(
dg ∧ dxJ

)
= dUω ∧ θ + (−1)kω ∧ dUθ.

To see that dU (dUω) = 0 we first show that dU (df) = 0 for any

function f ∈ C∞(U). For this write df = ∂f
∂xi dx

i (cf. Definition 8.4).

Then

dU (df) =
∂2f

∂xi∂xj
dxi ∧ dxj ,

where we abbreviate ∂2f
∂xi∂xj = ∂

∂xj

(
∂f
∂xi

)
. But by elementary calculus,

∂2f
∂xi∂xj is symmetric in i and j, whereas dxi ∧ dxj is anti-symmetric.

Thus the sum cancels.

Next, if f, g ∈ C∞(U) then using the graded derivation property we

have

dU (df ∧ dg) = dU (df) ∧ dg − df ∧ dU (dg) = 0,

and more generally if f, f1, . . . fk ∈ C∞(U) are any functions then

dU (df ∧ df1 ∧ · · · ∧ dfk) = 0.
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Applying this with fj = xij and using R-linearity shows that dU (dUω) =

0 for any ω ∈ Ωk(U).

3. Suppose (V, y) is another chart defined on an open set such that

U ∩ V 6= ∅. By Proposition 22.27 applied to the graded derivations

dU and dV restricted Ω(U ∩ V ), to prove (23.2) it suffices to show

they agree on functions and on exact 1-forms. But this is clear: if

f ∈ C∞(U ∩ V ) then one has

dUf = dV f = df,

and the argument we just gave above showed that

dU (df) = dV (df) = 0.

This completes the proof.

Definition 23.2. A differential form ω is said to be closed if dω = 0.

A differential form ω is said to be exact if ω = dθ for some θ (this

extends Definition 22.26 to k-forms for k > 1. Since d ◦ d = 0, any

exact form is closed, but the converse is typically false. One denotes

the quotient vector space by

Hk
dR(M) :=

{closed k-forms}
{exact k-forms}

,

where the “dR” stands for “de Rham”. An element of Hk
dR(M) is

written as [ω], where ω is a closed k-form. Thus by definition

[ω] = [ω + dθ].

We call Hk
dR(M) the kth de Rham cohomology group of M . Even though the de Rham groups are

actually vector spaces (and not just
abelian groups), it is still common

to refer to them as the “de Rham

cohomology groups”. of M .Do not be scared by the word “cohomology” if you are not

familiar with algebraic topology. As far as this course is con-

cerned, all that is important is that Hk
dR(M) is a quotient

vector space.

In Lecture 27 we will see that the de Rham groups are a topological

invariant of M . For now we content ourselves with computing the

zeroth groups.

Lemma 23.3. If M is connected then H0
dR(M) ∼= R.

Proof. Since there are no differential forms of negative degree, there The same argument shows that if M

has n connected components then

H0
dR(M) ∼= Rn.

are in particular no exact 0-forms. Thus H0
dR(M) is simply the space

of closed 0-forms. A function f satisfies df = 0 if and only if f is

locally constant.

Lemma 23.4. Let ϕ : M → N be a smooth map and let ω ∈ Ω(N).

Then

ϕ∗(dω) = d(ϕ∗ω).
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Thus ϕ∗ commutes with the exterior differential operators:

Ω(M) Ω(M)

Ω(N) Ω(N)

d

d

ϕ∗ ϕ∗

Proof. We first prove the lemma for the special case of 0-forms, i.e

functions. Let f ∈ C∞(N) and X ∈ X(M). Then manipulating the

definitions gives us

Each line in this block of equations is
a function on M .

ϕ∗(df)(X) = df(Dϕ(X))

= Dϕ(X)(f)

= X(f ◦ ϕ)

= d(f ◦ ϕ)(X)

= d(ϕ∗f)(X).

For the general case, by arguing as in the proof of Theorem 23.1

it suffices to work in a chart domain and assume ω is of the form

f dxi1 ∧ · · · ∧ dxik . Then since we already know that ϕ∗ is an algebra

homomorphism (Lemma 22.21) and we already proved the result for

functions:

ϕ∗(dω) = ϕ∗
(
df ∧ dxi1 ∧ · · · ∧ dxik

)
= ϕ∗(df) ∧ ϕ∗(dxi1) ∧ · · · ∧ ϕ∗(dxik)

= d(ϕ∗(f)) ∧ d(ϕ∗xi1) ∧ · · · ∧ d(ϕ∗xik)

= d
(
ϕ∗(f) ∧ d(ϕ∗xi1) ∧ · · · ∧ d(ϕ∗xik)

)
= d(ϕ∗ω).

This completes the proof.

Corollary 23.5. If ϕ : M → N is a smooth map then ϕ∗ induces a

well-defined map (also denoted by) ϕ∗ : Hk
dR(N)→ Hk

dR(M) via:

[ω] 7→ [ϕ∗ω].

Proof. By Lemma 23.4, ϕ∗ maps closed forms to closed forms and

exact forms to exact forms.

We now relate the Lie derivative to the exterior differential.

Proposition 23.6. Let M be a smooth manifold and fix X ∈ X(M).

Then d commutes with LX :

Ω(M) Ω(M)

Ω(M) Ω(M)

LX

d

LX

d
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Proof. We first prove the result for functions. For a function f and a

vector field Y , one has by (22.7) that

LX(df)(Y ) = X(Y (f))− [X,Y ](f)

= Y (X(f))

= d(X(f))(Y )

= d(LXf)(Y ).

Since Y was arbitrary, this shows that LX(df) = d(LXf). For the

general case, by Remark 22.28, d ◦ LX − LX ◦ d is a graded derivation

of degree +1. By Proposition 22.27, if we can show it vanishes on

functions and exact 1-forms then it is identically zero. We just did the

case for functions, and for an exact 1-form we have

d(LX(df))− LX(d(df)) = d(LX(df))− 0

= d(d(LXf)

= 0.

This completes the proof.

We now move onto defining a third operator on Ω(M), called the

interior product. As usual, this begins at the linear algebra level.

Definition 23.7. Let V be a vector space, and fix v ∈ V . Define

iv :
∧k
V ∗ →

∧k−1
V ∗ by declaring that on decomposable elements

λ1 ∧ · · · ∧ λk that

iv(λ
1 ∧ · · · ∧ λk) =

k∑
i=1

(−1)i+1λi(v) · λ1 ∧ · · · ∧ λi−1 ∧ λi+1 ∧ · · · ∧ λk,

and then extending by linearity.

Straight from the definition, we see that:

Lemma 23.8. Let ω ∈
∧h
V ∗ and θ ∈

∧k
V ∗. Then

iv(ω ∧ θ) = ivω ∧ θ + (−1)hω ∧ ivθ.

An alternative characterisation of the interior product is given by

the following statement, whose proof is on Problem Sheet J.

Lemma 23.9. Let v ∈ V and let ω ∈
∧k
V ∗. If we regard both ω and

ivω as elements of Altk(V ) and Altk−1(V ) respectively (via Proposi-

tion 19.24), then

(ivω)(v1, . . . , vk−1) = ω(v, v1, . . . , vk−1).

Note this shows that iv ◦ iv = 0. We now transfer this to manifolds.

Proposition 23.10. Let M be a smooth manifold and let X ∈ X(M).

There is a graded derivation iX : Ω(M) → Ω(M) of degree −1 defined

by declaring that if ω ∈ Ωk(M) for k ≥ 1 then

(iXω)(X1, . . . , Xk−1) := ω(X,X1, . . . , Xk−1),

for X1, . . . , Xk−1 ∈ X(M). Meanwhile for k = 0 we set iXf := 0. One

has iX ◦ iX = 0. This is the unique graded derivation of degree −1

such that iXω = ω(X) for ω a 1-form and iXf = 0 for f a function.



6

The proof is immediate; uniqueness follows from Proposition 22.27.

Corollary 23.11. Let X,Y ∈ X(M). Then

i[X,Y ] = LX ◦ iY − iY ◦ LX

as operators on Ω(M).

Proof. Both sides are graded derivations of degree −1 by Remark

22.28. Thus it suffices to check on functions and exact 1-forms. For

functions both sides are zero. For an exact 1-form df this follows from

(22.7) applied with ω = df .

The exterior differential, Lie derivative, and interior product are

related by the following useful formula that goes by the somewhat

flamboyant name of Cartan’s Magic Formula.

Theorem 23.12 (Cartan’s Magic Formula). Let X ∈ X(M). Then

LX = d ◦ iX + iX ◦ d.

Proof. Again, both sides are graded derivations of degree 0 by Remark

22.28. Thus by Proposition 22.27 we need only check they agree on

functions and exact 1-forms. On functions this follows from Lemma

10.2 and on exact 1-forms this was Proposition 23.6.

We conclude this lecture by using Cartan’s Magic Formula to give a

coordinate free definition of the exterior differential d.

Theorem 23.13. Let M be a smooth manifold, ω ∈ Ωk(M) and

X0, . . . Xk ∈ X(M). Then:

dω(X0, . . . , Xk) =

k∑
i=0

(−1)iXi

(
ω(X0, . . . , X̂i, . . . , Xk)

)
+

∑
0≤i<j≤k

(−1)i+jω([Xi, Xj ], X0, . . . X̂i, . . . , X̂j , . . . , Xk).

Here and elsewhere, the caret X̂i means that the Xi term should be

omitted.

Proof. One has dω(X0, . . . , Xk) = iX0(dω)(X1, . . . , Xk), which by

Cartan’s Magic Formula is equal to

(LX0ω)(X1, . . . , Xk)− d(iX0ω)(X1, . . . , Xk). (23.3)

We now argue by induction on k. If k = 1 then by (22.7) this becomes

LX0(ω(X1))− ω([X0, X1])− d(ω(X0))(X1)

= X0(ω(X1))−X1(ω(X0))− ω([X0, X1]),

which is what we want. Now assume k ≥ 2 and that the result is true

for all forms of degree k − 1. By (22.8) the first term of (23.3) is equal

to

X0(ω(X1, . . . , Xk))−
k∑
i=1

ω(X1, . . . , [X0, Xi], . . . , Xk).
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By induction, we have that d(iX0
ω)(X1, . . . , Xk) is equal to

k∑
i=1

(−1)i−1Xi

(
(iX0

ω)(X1, . . . , X̂i, . . . , Xk)
)

+
∑

1≤i<j≤k

(−1)i+j
(
iX0

(ω)([Xi, Xj ], X1, . . . , X̂i, . . . , X̂j , . . . , Xk)
)
.

Putting this into (23.3) and checking the signs carefully gives the

desired result.



Will J. Merry

LECTURE 24

Orientations and Manifolds With Boundary

We now move onto a somewhat different topic and discuss orientations

of vector bundles. This is the first of two preliminary topics we need

to cover (the second is manifolds with boundary) before we can state

and prove Stokes’ Theorem, which is about integrating differential

forms on oriented manifolds with boundary.

As usual, let us start at the level of linear algebra. Of course, you

have all known since kindergarten what an orientation of a vector

space is, but perhaps you haven’t seen it in the “right” language yet.

Definition 24.1. Let V be a one-dimensional vector space. Then

V \ {0} has two components. An orientation of V is a choice of one

of these components, which one then labels as “positive”. The other

component is then labelled “negative”. A positive basis of V is a

choice of any non-zero vector belonging to the positive component. A

negative basis of V is a choice of any non-zero vector belonging to

the negative component.

Example 24.2. The standard orientation of R is given by declaring

that the positive numbers are (surprise!) the positive component of

R \ {0}.

Definition 24.3. Let V be a vector space. We will use the notation

detV to mean
∧n
V where n = dimV . One calls detV the determi-

nant of V . From Lemma 19.27, the space detV is a one-dimensional

vector space. Moreover if (ei) is a basis for V then e1 ∧ · · · ∧ en is a

basis of detV .

Definitions 24.4. Let V be a vector space of positive dimension. An

orientation on V is a choice of orientation on detV . Thus there are

exactly two orientations. An oriented vector space is a vector space

together with a choice of orientation. A basis (ei) of an oriented vector

space V is said to be positive if e1 ∧ · · · ∧ en is a positive basis of

detV . If instead e1 ∧ · · · ∧ en is a negative basis of detV , then (ei) is a

negative basis of V .

Example 24.5. If ei denotes the standard ith basis vector in Rm then

the standard orientation of Rm is given by declaring that e1∧· · ·∧en
is a positive basis of detRm. Thus (ei) is a positive basis of Rm.

You are probably more used to thinking of the determinant of a

linear transformation, rather than the determinant of a vector space

itself. The motivation for this terminology goes as follows. Suppose

that V and W are vector spaces of the same dimension n. A linear

map ` : V → W induces a linear map Φ` : detV → detW , defined

explicitly by

Φ`(v1 ∧ · · · ∧ vn) := `v1 ∧ · · · ∧ `vn.
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This is a linear map between two one-dimensional vector spaces, and

hence is multiplication by a scalar. This scalar is non-zero if and only

if ` is an isomorphism. In general the precise value of this scalar de-

pends on a choice of basis of V and W , but the linear map Φ` itself

clearly does not. If ` is an isomorphism and V and W are oriented,

then we say that ` is orientation-preserving if Φ` maps the positive

component of detV to the positive component of detW . Otherwise `

is orientation-reversing.

If V = W and we choose the same basis for both the domain V and

the target V then the value of the scalar is independent of the basis.

In this case, it is common to call the scalar the determinant of `.

Explicitly, if (ei) is our chosen basis then

Φ`(e1 ∧ · · · ∧ en) = (det `) · e1 ∧ · · · ∧ en.

It is convenient to extend the definition of Φ` to all linear maps by

declaring that if ` : V → W is a linear map with dimV 6= dimW then

Φ` : detV → detW is the zero map.

Exercise: Check this new definition of determinant coincides with

the one you are used to from linear algebra. Use this to give slicker

proofs of everything you learnt in your linear algebra course.

Remark 24.6. If V is a vector space then an orientation on V canoni-

cally determines an orientation on the dual space V ∗ by declaring that

the dual basis to a positive basis is positive.

Now we move to vector bundles. A vector bundle of rank one is

often called a line bundle.

Warning 24.7. This terminology is also popular in complex geometry

and algebraic geometry too. But typically there people are working

with complex vector bundles, not real vector bundles. A complex

line bundle is (in particular) a two-dimensional real vector bundle.

So when taken out of context, beware that the phrase “line bundle”

may either refer to a one-dimensional real bundle or a one-dimensional

complex bundle.

Definition 24.8. Let E be a vector bundle over M . The determi-

nant line bundle associated to E is the vector bundle detE → M of

rank one whose fibre over x ∈M is detEp.

Roughly speaking, a vector bundle π : E → M is oriented if each

fibre Ep is given an orientation which depends smoothly on p. To

make this precise, we prove the following result.

Proposition 24.9. Let π : E → M be a vector bundle of rank n over

M . The following are equivalent:

(i) There is a smooth nowhere vanishing section µ ∈ Γ(detE∗).

(ii) It is possible to reduce the structure group of E from GL(n) to

GL+(n).
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(iii) The bundle detE∗ →M is a trivial bundle.

Proof. We prove the result in three steps.

1. We first prove (i) implies (ii). Let {(Ua, εa) | a ∈ A} be a vector

bundle atlas for E. We may assume each Ua is connected. For each

a ∈ A, we obtain a local frame (ea1 , . . . , e
a
n) for E over Ua via Lemma

20.6. Since µ is non-vanishing, for each a ∈ A the function Explicitly, this is the function given
by p 7→ µp(e1(p), . . . , en(p)), where

we view µp ∈
∧nE∗p as an element of

Altn(Ep) via Proposition 19.24.µ(ea1 , . . . , e
a
n) : Ua → R (24.1)

is either everywhere positive or everywhere negative. If for a given a

one has that (24.1) is positive, we do nothing. If instead for a given a

one has that (24.1) is negative, we replace the local frame (ea1 , . . . , e
a
n)

with the new one (−ea1 , . . . , ean), and then, using Lemma 20.6 again,

replace εa with the vector bundle chart corresponding to this new

frame. Having done this, we may assume that (24.1) is a positive

function for every a ∈ A.

We claim that our new bundle atlas, which we still denote by

{(Ua, εa) | a ∈ A}, has its structure group contained in GL+(n).

Indeed, if Ua ∩ Ub 6= ∅ then we can write

ebj(p) = f ij(p)e
b
i (p), ∀ p ∈ Ua ∩ Ub,

for smooth functions f ij : Ua ∩ Ub → R. In fact, unravelling the def-

inition shows that f ij(p) is the (i, j)th entry of the transition matrix

εba(p). Thus for any p ∈ Ua ∩ Ub, by Corollary 19.26 we have

µ(ea1 , . . . , e
b
n)(p) = det εba(p) · µ(ea1 , . . . , e

a
n)(p).

Thus det εba(p) > 0 for all p ∈ Ua ∩ Ub, which is what we wanted to

prove.

2. Now we show that (ii) implies (i). For this we start with a

vector bundle atlas {(Ua, εa) | a ∈ A} with structure group in GL+(n)

and we have to build a section µ. Let (e1
a, . . . , e

n
a) denote the dual

frame to the local frame (ea1 , . . . , e
a
n) associated to εa, and let {κa |

a ∈ A} denote a partition of unity subordinate to the open cover

{Ua | a ∈ A}. We now define

µ : M → detE∗, µ :=
∑
a∈A

κa e
1
a ∧ · · · ∧ ena .

We need only check that µ is nowhere vanishing. Fix p ∈ M . Then

there exists b ∈ A such that p ∈ Ub. We evaluate µ on eb1 ∧ · · · ∧ ebn at p

to discover

µp
(
eb1(p), . . . , ebn(p)

)
=
∑
a∈A

(
det εba(p)

)
κa(p),

which is positive as desired.

3. Finally, since detE∗ is a one-dimensional vector bundle, it is

trivial if and only if it admits a nowhere vanishing section (this is a

special case of Corollary 20.7). Thus (i) and (iii) are equivalent by

Lemma 20.6. This completes the proof.
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We now use Proposition 24.9 to define precisely what it means for a

vector bundle to be orientable.

Definition 24.10. Let π : E → M be a vector bundle. We say that E

is orientable if either of the three conditions from Proposition 24.9 is

satisfied.

Assume E is orientable. Define an equivalence relation on the space

of non-vanishing sections of detE∗ by declaring that µ1 and µ2 are

equivalent if there exists a strictly positive smooth function f on M

such that µ2 = fµ1. We call an equivalence class an orientation

of E. An oriented vector bundle is an orientable vector bundle E

together with a choice of orientation. If M is connected then there are

exactly two possible orientations.

Notation. We typically denote an orientation with the symbol o;

thus saying µ ∈ o means that µ is a non-vanishing section of detE∗

belonging to the orientation o.

Definition 24.11. Suppose (E, o) is an oriented vector bundle. We

assign an orientation to each vector space Ep as follows: a basis (vi)

of Ep is positive if and only if µp(v1, . . . , vn) > 0 for some (and hence

any) µ ∈ o.

This clarifies the intuitive idea that an orientation of a vector bun-

dle is an orientation of each fibre that depends smoothly on p. Simi-

larly we say a local frame (ei) is positively oriented if the function

µ(e1, . . . , en) is positive.

Specialising this to our favourite type of vector bundle tells what it

means for a manifold to be orientable.

Definition 24.12. A manifold M is said to be orientable if TM →
M is an orientable vector bundle.

In this case since Γ(detT ∗M) = Ωm(M) is just the top-dimensional

differential forms, an non-vanishing section of detT ∗M is simply a

nowhere vanishing differential m-form. This has its own special name:

Definition 24.13. A volume form on a smooth manifold M is a

nowhere-vanishing differential m-form.

A manifold together with a choice of orientation o is called an ori-

ented manifold. By a slight abuse of notation we often refer to o as

an orientation of M itself, rather than an orientation of TM .

Definition 24.14. Let (M, oM ) and (N, oN ) be two oriented man-

ifolds of the same dimension m. Suppose ϕ : M → N is a diffeo-

morphism. Let µM ∈ oM and µN ∈ oN . Then ϕ∗µN = fµM for a

smooth nowhere vanishing function f ∈ C∞(M). We say that ϕ is In symbols we write this as ϕ∗oN =
±oM .orientation preserving if f is everywhere positive and orientation

reversing if f is everywhere negative. This does not depend on the

choice of µM and µN .

Note that if M and N are not connected, it may be the case that ϕ

is neither orientation preserving or reversing.
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Definition 24.15. As a special case of this, a chart x : U → O on

an oriented manifold M is said to be positively oriented if x is an

orientation preserving diffeomorphism between manifolds U and O
(here U inherits the orientation from M and O inherits the standard

orientation from Rm).

We conclude this lecture by restating Proposition 24.9 in the special

case of a tangent bundle, since this will more convenient to refer back

to in the future.

Corollary 24.16 (Orientability of manifolds). Let M be a smooth

manifold. The following are equivalent:

(i) M admits a volume form.

(ii) There exists a smooth atlas {xa : Ua → Oa | a ∈ A} for M such that

whenever Ua ∩ Ub 6= ∅,

detD(xa ◦ x−1
b )(xb(p)) > 0, ∀ p ∈ Ua ∩ Ub. (24.2)

We call such an atlas a positively oriented smooth atlas. Note

that every chart xa is then positively oriented.

(iii) The determinant line bundle of the cotangent bundle T ∗M is a

trivial bundle.

On Problem Sheet J you will see some examples of orientable and

non-orientable manifolds.

Let us now move on to defining manifolds with boundary. A serious

defect of differential geometry so far (at least as we have defined it)

is that many natural and interesting compact subsets of Euclidean

space fail to be manifolds, and thus none of our results are applicable

to them.

Two key examples are the closed unit ball Dm, or a closed interval

[a, b] ⊂ R. Neither of these are locally Euclidean spaces (of dimension

m and 1 respectively), since points on their boundary do not have

neighbourhoods that are homeomorphic to open subsets of Rm (or

R). But note in both cases their interior is a smooth manifold of the

desired dimension. For the closed ball Dm, the interior is Bm which

is an m-dimensional manifold, and for the interval [a, b], the interior

(a, b) is a one-dimensional manifold. Moreover the boundary in both

cases is an (m − 1)-dimensional manifold: for the closed ball, ∂Dm =

Sm−1, and ∂[a, b] = {a, b}.

Warning 24.17. In Lecture 1 (cf. Remark 1.18) we noted that mani-

fold theory had re-purposed the words “open” and “closed” and given

them their own meanings, which in many cases were not the same

as the topological definitions of open and closed. In these notes we

elected not to use the “manifold” meanings, and thus for us the words

“open” and “closed” should always be taken to have their standard

topological meaning.

Unfortunately the same is true of the word “boundary”. As we

will shortly see, the “boundary” of a manifold does not necessarily
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coincide with the topological definition of the word boundary. This

time we will favour the manifold definition of the word, and thus when

we write ∂M this is always taken to mean the “manifold” definition

of the boundary (which we will shortly introduce). We will use the

phrase topological boundary to denote the boundary in the sense of

point-set topology, and use the notation ∂top. Thus for any subset Y

of a topological space X,

∂topY := Y \ int(Y ).

We will see several examples below where ∂M 6= ∂topM for M a

manifold with boundary.

Definitions 24.18. A pair of half-spaces of Rm is specified by two

things: a linear functional λ ∈ (Rm)∗, and a real number c, which

gives us the

Rmλ≥c := {p ∈ Rm | λ(p) ≥ c} ,
Rmλ≤c := {p ∈ Rm | λ(p) ≤ c} .

In a similar way we have open half-spaces

Rmλ>c := {p ∈ Rm | λ(p) > c} ,
Rmλ<c := {p ∈ Rm | λ(p) < c} .

The intersection

Rmλ=c = Rmλ≥c ∩ Rmλ≤c = {p ∈ Rm | λ(p) = c}

is called a hyperplane.

Example 24.19. Take λ : Rm → R denote the linear functional u1, i.e.

λ(u1, . . . , um) = u1.

We define the standard half-spaces to be

Rmu1≥0 :=
{

(u1, . . . , um) ∈ Rm | u1 ≥ 0
}
,

Rmu1≤0 :=
{

(u1, . . . , um) ∈ Rm | u1 ≤ 0
}
,

which we will typically abbreviate by Rm+ and Rm− respectively.

Warning 24.20. It is more common in the literature to define the

“standard” half-spaces using λ = um instead. For instance, Rmum≥0

is the “upper half-plane” Hm usually used in hyperbolic geometry.

We prefer to use the standard half-spaces from Example 24.19 for two

reasons:

(i) As we will see next lecture, using Rm− as our “model” half-space

leads to simpler formulae when discussing integration. The reason

for this is explained in Problem J.7.

(ii) The symbol Hm is usually understood to denote the half-space

Rmum≥0 which in addition has been endowed with its standard hy-

perbolic metric (a topic we will come back to extensively in Differ-

ential Geometry II). Since we are not making any statements about

metrics here, to avoid confusion we prefer not to use the symbol

Hm.
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Of course, at the end of the day it is essentially irrelevant which half-

space we choose as our “standard” one; they all give rise to the same

notion. We could equally as well set the entire theory up with our

“standard” half-space being Rmλ≥π, where

λ(u1, . . . , um) :=

m∑
i=1

(−1)iui − log Γ(m).

(This choice would be somewhat inconvenient when it came to compu-

tations though!)

With these considerations in mind, let us now define a topological

manifold with boundary.

Definition 24.21. A separable metrisable space M is called a topo- The assumptions “separable and

metrisable” can be replaced with
Hausdorff and second countable; cf.

Proposition 1.32.

logical manifold with boundary of dimension m if every point

p ∈ M has a neighbourhood homeomorphic to an open subset of the

standard half-space Rm− .

As with normal manifolds, by convention the dimension is usually

understood to be the corresponding small letter.

Any topological manifold of dimension m is also a topological man-

ifold with boundary of dimension m. This is because the intersection

of an open set in Rm with Rm− is open in Rm− . The converse is not nec-

essarily true, however, since an open subset of Rm− that intersects the

hyperplane Rmu1=0 is not an open subset of Rm.

Definition 24.22. Let M be a topological manifold with boundary.

We say a point p ∈ M is an interior point if p admits a neighbour- This notion coincides with the topo-
logical one, see Proposition 24.24

below and Problem Sheet J.
hood that is homeomorphic to an open subset of Rm. We denote by

int(M) the set of interior points. If p is not an interior point then

we say p is a boundary point. We denote by ∂M the collection of

boundary points.

The fact that the dimension is well-defined again requires us to

invoke Brouwer’s Invariance of Domain Theorem (cf. Remark 1.5). In

the smooth case however this will be much easier.

Example 24.23. Here are some examples of topological manifolds

with boundary:

(i) A topological space M is a topological manifold of dimension m if

and only if it is a topological manifold with boundary of dimension

m such that ∂M = ∅.

(ii) Any half-space Rmλ≥c is a topological manifold with boundary of

dimension m. The boundary ∂Rmλ≥c is Rmλ=c. More generally any

open subset Q of Rmλ≥c is a topological manifold with boundary,

with ∂Q = Q ∩ Rmλ=c.

(iii) The closed unit ball Dm is a topological manifold with boundary of Exercise: Prove this!

dimension m. One has ∂Dm = Sm−1.
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(iv) The closed m-dimensional cube Im = [−1, 1]m that we used in

Lecture 14 is a topological manifold with boundary of dimension m.

In this case ∂Im is homeomorphic to Sm−1.

(v) The punctured closed unit ball Dm \ {0} is a topological manifold

with boundary, since it is an open subset of the topological man-

ifold with boundary Dm. This is an example where the manifold

boundary is not the same as the topological boundary, since:

∂(Dm \ {0}) = Sm−1, ∂top(Dm \ {0}) = Sm−1 ∪ {0}.

(vi) More generally, any annulus which is half-open and half-closed, eg.

A≤R>r := {p ∈ Rm | r < ‖p‖ ≤ R},
A<R≥r := {p ∈ Rm | r ≤ ‖p‖ < R},

is a topological manifold with boundary whose boundary consists of

the boundary circle for which one has the non-strict equality:

∂A≤R>r = {‖p‖ = R}, ∂A<R≥r = {‖p‖ = r},

meanwhile

∂topA≤R>r = ∂topA<R≥r = {‖p‖ = r} ∪ {‖p‖ = R}.

Proposition 24.24. Let M be a topological manifold with boundary.

Then int(M) ∩ ∂M = ∅. Moreover int(M) is a topological manifold

without boundary of dimension m and ∂M is a topological manifold

without boundary of dimension m− 1.

Proof. The fact that int(M) ∩ ∂M = ∅ uses Brouwer’s Theorem as

mentioned above (since Rm is not homeomorphic to Rm−1). The rest

is clear, since an open subset Q of Rmλ≥c that does not intersect Rmλ=c

is also open in Rm, and if Q is open in Rmλ≥c then Q ∩ Rmλ=c is open in

Rmλ=c
∼= Rm−1.

Corollary 24.25. If M is a topological manifold with boundary and

U ⊂ M is an open set then U is a topological manifold with boundary,

and ∂U = U ∩ ∂M .

We now define smooth manifolds with boundary. We begin by

extending by the definition of a diffeomorphism between open subsets

of half-spaces. We already know (Definition 7.15) how to define what

it means for a map to be smooth whose domain is not open, so it

remains to extend this to the case when the range is also not open.

Definition 24.26. Let Q ⊂ Rmλ≥c denote an open set and f : Q →
Rnη≥d a continuous map. We say that f is smooth if the compo-

sition ι ◦ f : Q → Rn is smooth in the sense of Definition 7.15,

where ι : Rnη≥d ↪→ Rn is the inclusion. If both f : Q → f(Q) and

f−1 : f(Q) → Q are homeomorphisms between open sets of half-spaces

that are smooth in this sense, then we say that f is a diffeomor-

phism.
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The next result is standard calculus; the proof is omitted.

Proposition 24.27. Here are some properties of smooth maps be-

tween open sets of half-spaces:

(i) Let O be an open subset of Rm with non-empty intersection with

Rmλ≥c. Suppose f, g : O → Rn are smooth maps in the usual sense. i.e. in the sense of Definition 1.8.

If f = g on O ∩ Rmλ≥c then Df(p) = Dg(p) for all p ∈ O ∩ Rmλ≥c.

(ii) Let O ⊂ Rm be open and f : O → Rmη≥d be smooth. If f(p) ∈ Rmη=d i.e. in the sense of Definition 24.26.

for all p ∈ O then Df(p) has image in Jp
(
Rmη=d

) ∼= Rmη=0 for all

p ∈ O.

(iii) Suppose Q1 ⊂ Rmλ≥a and Q2 ⊂ Rnη≥d are open sets, and suppose

f : Q1 → Q2 is a diffeomorphism. Assume ∂Q1 = Q1 ∩ Rmλ=a and i.e. in the sense of Definition 24.26.

∂Q2 = Q2 ∩ Rnη=d are both non-empty. Then f induces diffeo-

morphisms ∂Q1 → ∂Q2 and int(Q1) → int(Q2) in the sense of

Definition 1.8, where we think of ∂Q1 and ∂Q2 as open subsets of

Rm−1 and Rn−1 respectively.

We then have:

Definition 24.28. Let M be a topological manifold with boundary.

A smooth atlas on M is a collection X = {xa : Ua → Qa | a ∈ A},
where {Ua | a ∈ A} is an open cover of M , each Qa is an open subset

of some m-dimensional half-space Rmλa≥ca (the precise half-space may

depend on a), and each xa : Ua → Qa is a homeomorphism such that

the usual compatibility condition is satisfied: if a, b ∈ A are such that

Ua ∩ Ub 6= ∅ then the composition

xb ◦ x−1
a : xa(Ua ∩ Ub)→ xb(Ua ∩ Ub)

should be a diffeomorphism in the sense of Definition 24.26.

We call each such xa a half-space chart. One then defines a

smooth structure in exactly the same way as in Definition 1.11, and

this gives us the definition of a smooth manifold with boundary.

Definition 24.29. A smooth manifold with boundary of di-

mension m is a pair (M,X) where M is a topological manifold with

boundary of dimension m, and X is a smooth structure on M in the

sense of Definition 24.28.

Just as with Proposition 24.24 we have:

Proposition 24.30. Let M be a smooth manifold with boundary.

Then int(M) ∩ ∂M = ∅. Moreover int(M) naturally inherits the

structure of a smooth manifold without boundary of dimension m,

and ∂M naturally inherits the structure of a smooth manifold without

boundary of dimension m− 1.

Proof. This follows from part (iii) of Proposition 24.27.

Example 24.31. All the examples from Example 24.23 are naturally

smooth manifolds with boundary, except for the unit cube Im, which

is not a smooth manifold with boundary when m ≥ 2. (See Problem

Sheet K.)
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Although the definition of a smooth atlas does not require all the

half-space charts to take values in the same half-space, it is often

convenient to assume they do.

Definition 24.32. A standard half-space chart is a half-space

chart x : U → Q with the property that Q is an open subset of our

preferred standard half-space Rm− . A standard smooth atlas on a

smooth manifold with boundary M is a smooth atlas as in Definition

24.28 all of whose charts are standard half-space charts.

It is easy to see that we may always assume this:

Lemma 24.33. Every smooth manifold with boundary admits a stan-

dard smooth atlas.

Remark 24.34. You might therefore ask what the point was in the

more general definition. This is two-fold: firstly it is convenient when

proving certain standard spaces are topological (resp. smooth) man-

ifolds with boundary to be allowed more flexibility. Secondly, the

distinction between good smooth atlases and normal smooth atlases

is meaningful in dimension m = 1 when one in addition insists on

orientability, as we will see in Proposition 24.40 below.

Many of the concepts we have covered so far in this course make

sense for manifolds with boundary, and we don’t have the time (or

energy) to fill in the details, so let us just briefly summarise some of

the important points:

• Partitions of unity still make sense for smooth manifolds with

boundary, and they always exist.

• If M is a smooth manifold with boundary then TpM is still an m-

dimensional vector space for all p ∈M . This is clear for p ∈ int(M),

so suppose p ∈ ∂M . Let x : U → Q denote a half-space chart about

p, where Q is an open set in some half-space Rmλ≥c and x(p) lies

in the hyperplane Rmλ=c. As before, a function f defined near p on

M is smooth at p if and only if f ◦ x−1 is smooth near z := x(p).

Now recall by definition a function is smooth if and only if it admits

a smooth extension to some open neighbourhood of z in Rm. If g

and h are any two such extensions of f ◦ x−1 then by part (i) of

Proposition 24.27 the derivatives of g and h coincide on Rmλ=c. It

follows that a derivation on the space of germs of smooth functions

at p can be defined in exactly the same way as before, and thus the

arguments from Lectures 2 and 3 go through without change to

show that the tangent space TpM at p is again an m-dimensional

vector space.

• On the other hand, the tangent space to ∂M at p ∈ ∂M can be

identified with an (m − 1)-dimensional subspace of TpM . Indeed, if

we let ι : ∂M ↪→ M denote the inclusion then with the notation as

above, x ◦ ι|U∩∂M is a chart on ∂M and thus Exercise: Prove that the right-hand
side of (24.3) does not depend on the

choice of half-space chart x.Dι(p)(Tp∂M) = Dx(p)−1
(
TzRmp=c

)
(24.3)
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We usually suppress the Dι(p) map and thus think of Tp∂M as an

actual subspace of TpM .

• If N is a smooth manifold (with or without boundary) and M ⊂ N

is a subset endowed with a topology and a smooth structure making

it into a smooth manifold with boundary such that the inclusion

M ↪→ N is an embedding then M is said to be an embedded sub-

manifold with boundary. Immersed submanifolds with boundary Exercise: Investigate how the Implicit

Function Theorem 6.10 behaves with
respect to manifolds with boundary.

What is the correct notion of a slice

chart in this setting?

are defined similarly. If M is a smooth manifold with boundary

then ∂M is an embedded submanifold of M – this follows immedi-

ately from the definition.

• Both the Whitney Embedding Theorem 7.1 and the Whitney Ap-

proximation Theorem 7.13 still work for manifolds with boundary.

• A vector field X on a smooth manifold with boundary M is said to

be tangent to ∂M if X(p) ∈ Tp∂M for each p ∈ ∂M . For vector

fields that are tangent to M , Theorem 9.10 still works.

• The notion of a fibre bundle still makes sense if the base space

is allowed to have boundary. In particular, vector bundles over

manifolds with boundary are defined entirely analogously. Things Exercise: Why?

go wrong however if the fibre is allowed to have boundary.

• Tensors and differential forms are defined in exactly the same way.

We will however go through one aspect in detail, since this will be

important in our treatment of the global Stokes’ Theorem in Lecture

27. Suppose M is a manifold with boundary and π : E → M is a

vector bundle over M . An orientation o of E is, as before, determined

by a non-vanishing section µ ∈ Γ(detE∗). Given such a section µ, we

can restrict it to obtain a section µ|∂M of the bundle detE|∂M → ∂M , This is a subbundle of E since ∂M is

an embedded submanifold of M , cf.
Definition 17.17.

where E|∂M = π−1(∂M).

For the special case E = TM , this gives us an orientation of the

bundle TM |∂M → ∂M . This however is not the same thing as an

orientation ∂M as a manifold – this would be an orientation of the

bundle T∂M → ∂M .

Definition 24.35. Let M be a smooth manifold with boundary of

dimension m, and let p ∈ ∂M . A tangent vector ξ ∈ TpM is said to

be outward pointing if for some half-space chart x : U → Q about p,

with Q ⊂ Rmλ≥c an open set and z := x(p) ∈ Rmλ=c, one has

λ
(
J−1
z (Dx(p)ξ)

)
< 0.

To unwrap this: Dx(p) is a linear map TpM → TzRmλ≥c = TzRm.

Applying the dash-to-dot map J−1
z we obtain a vector J−1

z (Dx(p)ξ) ∈
Rm, which λ can then eat to produce a real number. It follows from

part (iii) of Proposition 24.27 that the property of being outward

pointing is independent of the choice of half-space chart x.

The definition is rather clearer if we take a standard half-space

chart. Then the condition that ξ ∈ TpM is outward pointing is simply

that The sign change is because Rm− =

Rm−u1≥0
.
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dx1
p(ξ) > 0.

Similarly an inward-pointing vector is one for which dx1
p(ξ) < 0.

Figure 24.1: An outward point-

ing vector ξ

The notion of outward and inward pointing vectors allow us to

decompose TpM as:

TpM = {outward pointing} ∪ {inward pointing} ∪ Tp∂M,

since in such a chart x, one has

Tp∂M =
{
ξ ∈ TpM | dx1

p(ξ) = 0
}

by (24.3). Similarly a section X of TM |∂M is said to be outward

pointing if X(p) is outward pointing for every p.

Example 24.36. Let M be a manifold with boundary and let p ∈ ∂M .

Let (U, x) denote a standard half-space chart about p. Then ∂
∂x1 is an

outward pointing section of TM |∂M over U ∩ ∂M .

In fact, via a standard partition of unity argument, one can produce

outward pointing sections defined on the entire boundary.

Lemma 24.37. Let M be a smooth manifold with boundary. Then

there exists a section X ∈ Γ(TM |∂M ) of the bundle TM |∂M → ∂M

which is outward pointing at every p ∈ ∂M .

Proof. We may assume M has a standard smooth atlas {xa : Ua →
Qa | a ∈ A}. Let {κa | a ∈ A} denote a partition of unity subordinate

to {Ua | a ∈ A}. Set

X :=
∑
a

κa
∂

∂x1
a

.

This is outward pointing by Example 24.36.

Let us now use this to define the induced orientation.

Definition 24.38. Let (M, o) be an oriented smooth manifold with

boundary. Let µ ∈ Ωm(M) be a volume form representing o. Let X

be an outward pointing section. Then we can view iXµ as an element

of Ωm−1(∂M). Since X is outward pointing, iXµ is nowhere vanishing

on ∂M . Thus iXµ determines an orientation of ∂M , which we rather

suggestively write as ∂o. We call ∂o the induced orientation.

On Problem Sheet J you are asked to show that the induced orien-

tation is well-defined, i.e. independent of the choice of X and µ. Note

that if (X1, . . . , Xn) is a positively oriented frame for TM such that i.e. µ(X1, . . . , Xn) > 0 over U .

U ∩ ∂M is non-empty and such that X1|U∩∂M is outward pointing.

Then (X2, . . . , Xn) is a positively oriented local frame for TM |∂M over

U ∩ ∂M with respect to the induced orientation

Remark 24.39. In the case m = 1, the boundary ∂M is a discrete

set of points. We only defined orientations for vector spaces of positive

dimension, but this can still be made sense of if we simply think of

a boundary point p being positively oriented if the function µ(X) is

positive at p and negatively oriented otherwise.
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Here is an extension of Corollary 24.16 for manifolds with bound-

ary. This is where it is important to make the distinction between a

standard atlas and a normal one.

Proposition 24.40. Let M be an oriented smooth manifold with

boundary of dimension m. Then M admits a positively oriented

smooth atlas (that is, one such that (24.2) holds). If m ≥ 2 then

M admits a positively oriented standard smooth atlas.

Proof. If x is a chart with local coordinates (x1, . . . , xm) that is not

positively oriented then we replace it with a new chart (x1,−x2, . . . , xm).

If m ≥ 2 and x is a standard half-space chart then the new chart is

also a standard half-space chart. This goes wrong for m = 1 however,

since in this case it changes a R1
− half-space chart into a R1

+ half-space

chart.

For the rest of these notes, all manifolds (topological or

smooth) should be assumed not to have boundary, unless it

is explicitly said that they do.



Will J. Merry

LECTURE 25

Smooth Singular Cubes

In this lecture we begin our discussion of integration on manifolds. We

introduce the notion of a singular cube in a manifold and explain how Don’t worry if you have not seen

homology before. We will not use
any algebraic topology in this course.

Exception: the bonus section to

Lecture 27.

a differential form can be integrated over such a cube. We then mirror

the construction of singular homology and show how to create the

(smooth) cubical chain complex of M . We will use this formalism next

lecture en route to proving the manifold version of Stokes’ Theorem.

Definition 25.1. Let us abbreviate by Ck the closed cube [0, 1]k, In the past we used Ik for the open
cube (−1, 1)k; here it is more con-

venient to work on [0, 1] itself, so we

choose different notation.

thought of as sitting inside Rk. For k = 0, C0 = {0} is a point. A

smooth singular k-cube (often shorted to: a “singular k-cube” or

just a “k-cube”) in a smooth manifold M is a smooth map c : Ck →
M . Thus a singular 0-cube is simply a point c(0) in M .

Recall that by Definition 7.15 a map c : Ck → M is smooth if there

exists a neighbourhood U of Ck in Rk and a smooth map c̃ : U → M

such that c̃|Ck = c. Of course the extension c̃ is not unique. For k = 0,

we declare that any map c : C0 →M is smooth.

Remark 25.2. The adjective “singular” is meant to draw your atten-

tion to the fact that c need not be injective nor an immersion. Indeed,

a valid smooth singular k-cube would be a constant map! Moreover if

k > dimM then no singular k-cube can be an immersion.

The next example is more important than you would first guess.

Example 25.3. We let ik : Ck ↪→ Rk denote the inclusion and call ik
the standard smooth singular k-cube.

Remark 25.4. We will often regard ik as taking values in Ck, not

Rk, and hence identify ik with the identity map Ck → Ck. Strictly

speaking however in this case ik is not a smooth singular cube, since

the range space Ck is not a smooth manifold. For the most part we

shall ignore this pedantry.

Remark 25.5. You might hope that the machinery of smooth man-

ifolds with boundary that we developed last lecture would allow us

to forego the tedious extension business. This works fine for k = 1:

C1 = [0, 1] is a smooth manifold with boundary, and a singular 1-cube

is simply a smooth map C1 → M between manifolds. However for

k = 2 it goes wrong: C2 is not a manifold with boundary (see Problem

J.9). It is however a smooth manifold with corners, which is de-

fined as you might expect: instead of a half space atlas one works with

a quarter space atlas. If M is a smooth manifold with corners then its For C2, one has ∂C2 equal to the

union of the edges, and ∂(∂C2) equal
to the four vertices.

boundary ∂M is a smooth manifold with boundary, and the boundary

of the boundary is then a smooth manifold without boundary.

Sadly however this still isn’t enough, since for k ≥ 3 the space Ck

is not a smooth manifold with corners either. The correct notion is

Last modified: July 17, 2021.
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that of a stratified manifold, which, roughly speaking is a manifold

which is allowed to “boundary-like” pieces of arbitrarily high codi-

mension. A manifold with boundary is a stratified manifold with only

codimension one strata, and a manifold with corners is a stratified

manifold with only codimension one and two strata. In general, Ck is

a stratified manifold with k different stratas.

That said, developing the entire theory of stratified manifolds just

to dispense with the need to talk about extensions is somewhat ineffi-

cient, even by our standards, so we will stick with the extensions. This

will therefore be a minor annoyance throughout the lecture.

Definition 25.6. Let k > 0, and let ω ∈ Ωk(Ck) denote a k-form on i.e. ω is a k-form on some neighbour-

hood U of Ck in Rk.Ck. We can write ω = f du1 ∧ · · · ∧ duk for some f ∈ C∞(Ck). We

define the integral of ω to be the Riemann integral of f :∫
Ck
ω :=

∫
Ck
f

We emphasise the right-hand side is the normal Riemann integral of

the function h.

We now transfer this to manifolds:

Definition 25.7. Let k > 0 and let c be a smooth singular k-cube in

M and let ω ∈ Ωk(M) denote a k-form. Then c∗ω is a k-form on Ck.

We define the integral of ω over c to be the real number∫
c

ω :=

∫
Ck
c∗ω.

It would be sufficient if ω was only defined on some neighbourhood

of the image of c for this to make sense. For k = 0, the definition is

simpler; in this case ω is just a function f , and∫
c

f := f(c(0)).

Remark 25.8. If we write c∗ω = f du1 ∧ · · · ∧ duk then the function f

is given explicitly by This expression is well-defined since

c∗ω is really defined on some open
neighbourhood of Ck.f = c∗ω

(
∂

∂u1
, . . . ,

∂

∂uk

)
.

Thus an alternative formula is∫
c

ω =

∫
Ck
c∗ω

(
∂

∂u1
, . . . ,

∂

∂uk

)
,

where again the right-hand side is just a normal Riemann integral.

Remark 25.9. Since for any singular k-cube c we have c = c ◦ ik, we

have using (22.6) that ∫
c

ω =

∫
c◦ik

ω

=

∫
Ck

(c ◦ ik)∗(ω)

=

∫
Ck

i∗k(c∗ω)

=

∫
ik

c∗ω.
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Definition 25.10. A singular k-cube c : Ck → M is said to be de-

generate if there exists 1 ≤ i ≤ k such that c does not depend on

ui. Otherwise c is said to be non-degenerate. Thus a 0-cube is never

degenerate, and a 1-cube is degenerate if and only if it is a constant

map.

On Problem Sheet K you will prove.

Lemma 25.11. If c : Ck → M is a degenerate singular k-cube then∫
c
ω = 0 for any ω ∈ Ωk(M).

The next result is also on Problem Sheet K. You should think of it

as a version of the usual change of variables formula from multivari-

able calculus:

Proposition 25.12 (Change of Variables). Let c : Ck → M be a

smooth singular k-cube in M and let ϕ : Ck → Ck be an orientation

preserving diffeomorphism. Let c̃ := c ◦ ϕ. Then As usual, think of this as meaning
that ϕ is the restriction to Ck of an

orientation preserving diffeomorphism

of some neighbourhood.

∫
c

ω =

∫
c̃

ω.

Let us now consider formal sums of singular cubes.

Definition 25.13. Let Qk(M) denote the (infinite-dimensional) free To explain the notation: “cube”

sounds like it begins with a “Q”.vector space generated by the collection of all the smooth singular

k-cubes in M . Thus an element of Qk(M) is a formal finite sum q =∑
i ai ci where ai ∈ R and the ci are smooth singular k-cubes. We call

an element q ∈ Qk(M) a smooth singular k-chain, or (sometimes

just a k-chain). A k-chain q =
∑
i ai ci is said to be non-degenerate

if each cube ci is non-degenerate.

Example 25.14. Since a 0-cube in M is just a point in M , the space

Q0(M) can be thought as the infinite-dimensional vector space with

basis the points of M . In particular, if p, q ∈ M then the expression

p− q makes sense in Q0(M), even though it does not in M .

Warning 25.15. The space Q0(M) is a vector space with basis the

points in M . Thus (by definition) there are no relations between dif-

ferent elements. This can be confusing, particularly if the manifold M

happens to be a submanifold of Euclidean space where it does make

sense to add points together. As an example, let us take M = Rm. Let

v, w ∈ Rm be two vectors. Then in Rm, we can add v and w together

to get a new vector v + w. However in Q0(Rm), the three elements

v, w and v + w are linearly independent and thus it is not true that

v + w = (v + w)! A similar issue occurs with scalar multiplication.

If this confuses you, consider writing the addition and multiplication

operations in Q0(Rm) with a different colour, for instance red. Thus if

v, w ∈ Rm and a ∈ R then

v + w 6= v + w, a v 6= 1(av).

Luckily most of the time this shouldn’t be confusing, since typically

on manifolds one cannot add points together, and thus the notation is

unambiguous.
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Definition 25.16. We define the integral of a k-form over a k-chain

in M by linearity: if q =
∑
i ai ci then∫
q

ω :=
∑
i

ai

∫
ci

ω.

We will also need the concept of the boundary of a chain.

Definition 25.17. Let 1 ≤ i ≤ k. Define the ith front face map

fi,k : Ck−1 → Ck, (u1, . . . , uk−1) 7→ (u1, . . . , ui−1, 0, ui, . . . uk−1)

and the ith back face map

bi,k : Ck−1 → Ck, (u1, . . . , uk−1) 7→ (u1, . . . , ui−1, 1, ui, . . . uk−1)

When k is clear from the context, we write simply fi and bi instead.

Definition 25.18. Fix 1 ≤ i ≤ k and let c : Ck →M denote a singular

k-cube. The ith front face of c is the smooth singular (k − 1)-cube

c ◦ fi : C
k−1 → M . Similarly the ith back face of c is the smooth

singular (k − 1)-cube c ◦ bi : C
k−1 →M . We abbreviate

fic := c ◦ fi, bic := c ◦ bi.

Writing out the definitions yields the following statement.

Lemma 25.19. Let c : Ck → M be a smooth singular k-cube. Let

1 ≤ i < j ≤ k. Then:

fi(fjc) = fj−1(fic),

bi(bjc) = bj−1(bic),

fi(bjc) = bj−1(fic),

bi(fjc) = fj−1(bic).

(25.1)

Thus by definition

fi,k = fiik, bi,k = biik.

Definition 25.20. Let c : Ck → M be a smooth singular k-cube for

k > 0. We define the boundary of c, written ∂c, to be the element of

Qk−1(M) given by

∂c :=

k∑
i=1

(−1)i(fic− bic).

We define the boundary of a 0-cube to be the real number 1. Note

that if a cube c is non-degenerate then so is ∂c. We then extend ∂ to

arbitrary k-chains by linearity. Thus we may think of ∂ as a linear This works for k = 0 too if we define

Q−1(M) := R.map Qk(M)→ Qk−1(M) for all k ≥ 1.

Remark 25.21. Thus this is yet another meaning of the symbol ∂.

This one is not as confusing as the topological boundary and the man-

ifold boundary (cf. Remark 24.17), since c is a function, and thus

there can be no ambiguity about what is meant.
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Example 25.22. Let c : [0, 1]→M be a 1-cube. Then f1c is the 0-cube

c(0) and b1c is the 0-cube c(1). Thus ∂c = c(1) − c(0). Remember the

subtraction is taking place in Q0(M), not M itself!

Proposition 25.23. The boundary operator squares to zero: ∂2 = 0.

Proof. Since ∂ is linear, it suffices to show that ∂(∂c) = 0 for any cube

c. For this we compute:

∂(∂c) = ∂

(
k∑
i=1

(−1)i(fic− bic)

)

=

k∑
i=1

k−1∑
j=1

(−1)i+j
(

fj(fic)− fj(bic)− bj(fic) + bj(bic)
)

Using the face relations (25.1), we see that the first and fourth terms

cancel in pairs, and the second and third terms cancel each other.

Proposition 25.23 allows us to play a similar game to the definition Using the terminology from algebraic

topology, Proposition 25.23 tells us

that (Q•(M), ∂) is a chain complex.
We can thus take its homology.

(Definition 23.2) of the de Rham cohomology groups.

Definition 25.24. We say a chain q is closed if ∂q = 0 and a chain

q is exact if q = ∂p for some (k + 1)-chain p. Then every exact chain

is also closed (as ∂2 = 0), and thus we can form the quotient vector

space:

Hcube
k (M ;R) :=

{closed non-degenerate k-chains}
{exact non-degenerate k-chains}

.

We call Hcube
k (M ;R) the kth cubical singular homology group of M . The word “homology” is used because

∂ decreases the degree: ∂ : Qk →
Qk−1. In the de Rham construction
the exterior differential d increases the

degree: d : Ωk → Ωk+1. Thus we use

the word “cohomology”.

If q is a closed k-chain, we denote by [q] its equivalence class in

Hcube
k (M ;R). The reason for insisting on non-degeneracy will be

explained in the bonus section to Lecture 27. Unlike the groups

Hk
dR(M), which are certainly zero for k > dimM , a priori the groups

Hcube
k (M ;R) could be non-zero for arbitrarily high k. However this is

not the case. In fact, as we will explain in the bonus section to Lec-

ture 27, there is an isomorphism

Hcube
k (M ;R) ∼= Hn−k

dR (M), ∀k ≥ 0. (25.2)

The isomorphism (25.2) is one way of stating Poincaré Duality.

This is one of the cornerstones of modern algebraic topology.



Will J. Merry

LECTURE 26

Stokes’ Theorem

In this lecture we state and prove Stokes’ Theorem, which is one of Fun Fact: The only connection Stokes
has with “Stokes’ Theorem” is that he

decided to set it as a problem on an
exam.

the cornerstones of modern differential geometry. In fact, we will prove

two versions of Stokes’ Theorem: a local version (Theorem 26.2) using

the language of smooth singular cubes from the last lecture, and a

global version (Theorem 26.16) which concerns integration over the

entire manifold.

As a warm up, we translate the Fundamental Theorem of Calcu-

lus into the language of chains. This can be thought of as the one-

dimensional version of the Local Stokes’ Theorem.

Theorem 26.1 (The Fundamental Theorem of Calculus for Singular

1-Chains). Let f : R → R be differentiable and let q be a singular

1-chain in R. Then ∫
q

df =

∫
∂q

f

Proof. By linearity of the integral, we may assume that q is a single

singular 1-cube c. Then we compute∫
c

df =

∫ 1

0

c∗(df)

(
∂

∂t

)
dt

=

∫ 1

0

(f ◦ c)′(t)dt

= f(c(1))− f(c(0))

=

∫
c(1)

f −
∫
c(0)

f

=

∫
∂c

f,

where the third equality used the usual Fundamental Theorem of

Calculus that you have known since Kindergarten.

Here is the general Local Stokes’ Theorem.

Theorem 26.2 (The Local Stokes’ Theorem). Let M be a smooth

manifold. Let q ∈ Qk(M) and ω ∈ Ωk−1(M). Then∫
q

dω =

∫
∂q

ω.

Note Theorem 26.1 is the special case M = R and k = 1. The proof

is not particularly difficult, but it is somewhat fiddly, and hence it is

deferred to the bonus section below.

Definition 26.3. Let M be a smooth manifold. Then for 0 ≤ k ≤ m

we can think of integration as defining a bilinear map∫
: Qk(M)× Ωk(M)→ R, (q, ω) 7→

∫
q

ω.

Last modified: July 17, 2021.
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Corollary 26.4. The bilinear form
∫

is also well-defined on the

(co)homology level, that is, the map∫
: Hcube

k (M ;R)×Hk
dR(M)→ R, ([q], [ω]) 7→

∫
q

ω

is well-defined.

Proof. We already know that
∫
q
ω vanishes whenever q is degener-

ate (Lemma 25.11). Thus we need only show that if q is a closed

non-degenerate k-chain and ω is a closed k-form, then for any non-

degenerate (k + 1)-chain p and any (k − 1)-form θ, one has∫
q+∂p

(ω + dθ) =

∫
q

ω.

To see this we compute∫
q+∂p

(ω + dθ) =

∫
q

ω +

∫
∂p

ω +

∫
q

dθ +

∫
∂p

dθ

=

∫
q

ω +

∫
p

dω +

∫
∂q

θ +

∫
p

(d2θ)

=

∫
q

ω + 0,

where the second equality used Stokes’ Theorem and the last used the

assumption that q and ω are closed.

We move onto the global version of Stokes’ Theorem, starting with

an explanation of how to make sense of the expression
∫
M,o

ω. Unlike

the local version, this will only work when M is oriented and ω is a

compactly supported differential form of top degree m = dimM .

Definition 26.5. Let (M, o) be an oriented manifold. A singular cube

c : Cm → M is said to be orientation preserving if there exists a

neighbourhood U of Cm in Rm (or Rm+ when M has boundary) and an

orientation preserving embedding c̃ : U → M such that c̃|Cm = c. Note Here we always implicitly assume
Cm ⊂ Rm carries its standard

orientation.
that c̃ is thus a diffeomorphism onto its image.

Remark 26.6. If (M, o) is an oriented manifold, we can always find an

open cover of M such that each open set U in that cover is contained

in the interior of the image of an orientation preserving singular cube

c : Cm → M . Indeed suppose x : V → O is a positively oriented chart

(cf. Definition 24.15) such that Cm ⊂ O. Set c := x−1|Cm and let

U := x−1
(
( 1

3 ,
2
3 )m

)
. The collection of all open sets U as (V, x) ranges

over all such charts forms an open cover with the desired properties.

Definition 26.7. Let M be a smooth manifold, and let ω ∈ Ω(M).

The support of ω is defined in the same way as normal:

supp(ω) := {p ∈M | ωp 6= 0}.

A differential form ω is said to have compact support if supp(ω)

is compact. We denote by Ωc(M) ⊂ Ω(M) the subset of differential

forms with compact support, and Ωkc (M) the differential k-forms with
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compact support. Note that by definition of the exterior differential,

we have

supp(dω) ⊆ supp(ω).

The next lemma is the reason why global integration only works on

oriented manifolds.

Lemma 26.8. Let (M, o) be an orientated manifold and ω ∈ Ωm(M).

Let c1, c2 : Cm → M be two orientation preserving singular cubes, and

assume that

supp(ω) ⊂ int(im c1) ∩ int(im c2)

Then ∫
c1

ω =

∫
c2

ω.

Proof. This almost follows from Proposition 25.12, since c−1
2 ◦ c1 is

almost an orientation preserving diffeomorphism of Cm. The only

issue is that c−1
2 ◦ c1 may not be defined on all of Cm. However, since

supp(ω) ⊂ int(im c1) ∩ int(im c2), the proof of Proposition 25.12 goes

through without change to give∫
c2

ω =

∫
c2◦c−1

2 ◦c1
ω =

∫
c1

ω

as required.

Thus we can unambiguously make the following definition.

Definition 26.9. Let (M, o) be an oriented manifold and ω ∈
Ωm(M). Assume that ω has support in the interior of the image of

some orientation preserving singular cube c. We define∫
M,o

ω :=

∫
c

ω.

The following lemma is immediate from the definitions.

Lemma 26.10. If c is an orientation reversing singular cube and ω has

support in im c then ∫
M,o

ω = −
∫
c

ω.

Thus ∫
M,o

ω = −
∫
M,−o

ω.

We can use a partition of unity to extend this to an arbitrary ω ∈
Ωmc (M). We first give the definition, and then prove it is well defined.

Definition 26.11. Let (M, o) be an oriented manifold and let ω ∈
Ωmc (M). Let {Ua | a ∈ A} be an open cover with the property that

each Ua is contained in the interior of the image of some orientation

preserving singular cube (cf. Remark 26.6). Let {κa | a ∈ A} be a

partition of unity subordinate to this cover. We define∫
M,o

ω :=
∑
a∈A

∫
M,o

κa ω. (26.1)
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Note this is a finite sum since ω has compact support and supp(κa)

is locally finite.

Lemma 26.12. The sum (26.1) is well defined: if {Vb | b ∈ B} is

another open cover with the property that each Vb is contained in the

interior of the image of some orientation preserving singular cube and

{νb | b ∈ B} is a partition of unity subordinate to that cover then for

any ω ∈ Ωmc (M) one has:∑
a∈A

∫
M,o

κa ω =
∑
b∈B

∫
M,o

νb ω

Proof. Since ∑
a∈A

κa(p) =
∑
b∈B

νb(p) = 1, ∀ p ∈M,

we have using linearity of the integral that

∑
a∈A

∫
M,o

κa ω =
∑
a∈A

∫
M,o

(∑
b∈B

νb

)
κa ω

=
∑
a∈A

∑
b∈B

∫
M,o

νb κa ω

=
∑
b∈B

∫
M,o

(∑
a∈A

κa

)
νb ω

=
∑
b∈B

∫
M,o

νb ω

where the rearrangement of the sums is justified as everything is a

finite sum.

We now know how to integrate a top-dimensional differential form

with compact support on an oriented manifold. Let us extend this to

oriented manifolds with boundary. For this we use the following trick:

Definition 26.13. Let (M, o) be an oriented smooth manifold with

boundary. An orientation preserving singular cube c : Cm → M is said

to be adapted to the boundary if either im c ⊂ int(M) or

∂M ∩ im c = im(f1c),

where as usual f1c : Cm−1 →M is the first front face.

Lemma 26.14. Let (M, o) be an oriented smooth manifold with

boundary, and let c : Cm → M be a singular cube which is adapted

to the boundary such that im c ∩ ∂M 6= ∅. Then f1c is an orientation Recall ∂o denote the induced orienta-
tion of ∂M .reversing singular cube for (∂M, ∂o).

This is not a typo – we really do want f1c to reverse orientation! As

we shall see, the minus sign will eventually cancel, since the coefficient

of f1c in ∂c is −1.

Proof. We need only check that f1c is orientation reversing with re-

spect to the induced orientation. Let (ui) denote the standard coordi-

nates on Cm. Since c is a diffeomorphism, we may take c−1 as a Rm+ Remember c is really defined on an

open neighbourhood of Cm.
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half-space chart on M . Let xi := ui ◦ c−1 denote the local coordinates

of this chart. Since c is orientation preserving,
{

∂
∂x1 , . . . ,

∂
∂xm

}
is a

positive oriented local frame of TM . Note that ∂
∂x1 is an inward point-

ing section, and thus the frame
{

∂
∂x2 , . . . ,

∂
∂xm

}
is a negatively oriented The reason why ∂

∂x1 is inward point-

ing (in contrast to Example 24.36) is

that x is an Rm+ chart not a Rm− chart.
frame for T (∂M). This shows that f1c is orientation reversing.

Just as in Remark 26.6, if M is a smooth manifold with boundary

then we can always find an open cover of M with the property that

each open set is contained in the interior of the image of a orientating

preserving singular cube which is adapted to the boundary. We use

this to extend the definition of integration to manifolds with bound-

ary.

Definition 26.15. Let M be an oriented smooth manifold with

boundary, and let ω ∈ Ωmc (M). Let {Ua | a ∈ A} be an open cover

with the property that each Ua is contained in the image of some ori-

entation preserving singular cube which is adapted to the boundary.

Let {κa | a ∈ A} be a partition of unity subordinate to this cover. We

define ∫
M,o

ω :=
∑
a∈A

∫
M,o

κa ω.

The same proof as Lemma 26.12 shows this is well-defined. We are

finally ready to state and prove the Global Stokes’ Theorem.

Theorem 26.16 (The Global Stokes’ Theorem). Let (M, o) be an

oriented smooth manifold with boundary, and let ω ∈ Ωm−1
c (M). Then∫

M,o

dω =

∫
∂M,∂o

ω.

Proof. We prove the result in two steps. Let {Ua | a ∈ A} be an

open cover with the property that each Ua is contained in the image

of some orientation preserving singular cube which is adapted to the

boundary.

1. First assume that supp(ω) is contained in one of the sets Ua,

which itself is contained in the image of some orientation preserving

singular cube c which is adapted to the boundary. If im c ∩ ∂M = ∅
then the result is immediate from the Local Stokes’ Theorem 26.2,

since ∫
M,o

dω =

∫
c

dω =

∫
∂c

ω = 0,

since supp(ω) does not intersect the image of ∂c. But also clearly∫
∂M,∂o

ω = 0 since supp(ω) does not intersect ∂M .

Now assume that im c ∩ ∂M 6= ∅. Then we have:∫
M,o

dω =

∫
c

dω

=

∫
∂c

ω

=

m∑
i=1

(−1)i
(∫

fic

ω −
∫
bic

ω

)
= −

∫
f1c

ω,
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since supp(ω) misses all faces apart from f1c as c is adapted to the

boundary. Thus by Lemma 26.10 and Lemma 26.14 we have∫
M,o

dω = −
∫
f1c

ω

= (−1)2

∫
∂M,∂o

ω

=

∫
∂M,∂o

ω.

2. Now we prove the general case. Let {κa | a ∈ A} be a par-

tition of unity subordinate to the open cover {Ua | a ∈ A}. Then by

definition, ∫
∂M,∂o

ω =
∑
a∈A

∫
∂M,∂o

κa ω

=
∑
a∈A

∫
M

d(κa ω)

=
∑
a∈A

∫
M

dκa ∧ ω + κa dω

=

∫
M,o

dω +
∑
a∈A

∫
M

dκa ∧ ω

=

∫
M,o

dω +

∫
M,o

d

(∑
a∈A

κa

)
∧ ω

=

∫
M,o

dω + 0,

where the second equation used Step 1 and the fourth and last equal-

ities used he fact that
∑
a∈A κa ≡ 1, and the interchange of summa-

tion and integral is always justified as these are always finite sums as

supp(ω) is compact. This completes the proof.

Bonus Material for Lecture 26

In this bonus section we prove the Local Stokes’ Theorem, which for

convenience we restate here.

Theorem 26.17 (The Local Stokes’ Theorem). Let M be a smooth

manifold. Let q ∈ Qk(M) and ω ∈ Ωk−1(M). Then∫
q

dω =

∫
∂q

ω.

Proof. We prove the result in three steps.

1. Let us first consider the case where M = Rk and c = ik is the The Local Stokes’ Theorem in the

case M = Rk and c = ik is in fact
just a fancy way of expressing Fubini’s

Theorem.

standard cube from Example 25.3. This actually represents most of

the work. By linearity we may assume that ω is of the form

ω = g du1 ∧ · · · ∧ d̂uj ∧ · · · ∧ duk,
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where the carat indicates we skip the term duj . In this first step, we

come up with a nice formula for the right-hand side
∫
∂ik
ω.

We have by definition that∫
∂ik

ω =

k∑
i=1

(−1)i
(∫

fi

ω −
∫
bi

ω

)
. (26.2)

We now claim that: ∫
fi

ω =


∫
Ck−1 g ◦ fi, i = j,

0, i 6= j.
(26.3)

The proof of (26.3) is a little fiddly. One way to argue this is as fol-

lows: from Remark 25.8 and Corollary 19.26 we have that∫
fi

ω =

∫
Ck−1

(g ◦ fi) · detA,

where A = (Ahl ) is the (k − 1)× (k − 1) matrix whose entries are given

by

Ahl = Dl(u
h ◦ fi), for 1 ≤ l ≤ k − 1 and 1 ≤ h ≤ k, h 6= j.

The function uh ◦ fi is given by

uh ◦ fiik(u1, . . . , uk−1) = uh(u1, . . . , ui−1, 0, ui, . . . uk−1).

Thus if i = j then Ahl = δhl and thus detA = 1. However if i 6= j then

the entire ith row (Ail) is zero (since ui ◦ fi is the zero function), and

thus detA = 0. This proves (26.3). Together with a similar formula for

the back face, we see that (26.2) reduces to∫
∂ik

ω = (−1)j
∫
Ck−1

g ◦ fj − g ◦ bj . (26.4)

By Fubini’s Theorem and the Fundamental Theorem of Calculus:∫
Ck−1

g ◦ bj − g ◦ fj

=

∫ 1

0

· · ·
∫ 1

0

(
g(u1, . . . , 1, . . . , uk)− g(u1, . . . , 0, . . . , uk)

)
du1 · · · d̂uj · · · duk

=

∫
Ck

∂g

∂uj
.

Thus we conclude from (26.4) that∫
∂ik

ω = (−1)j−1

∫
Ck

∂g

∂uj
.

2. We now consider the term
∫
ik
dω. Since dg = ∂g

∂uj du
j we have

(writing the summation signs for clarity)

∫
ik

dω =

∫
ik

dg ∧ du1 ∧ · · · ∧ d̂uj ∧ · · · ∧ duk

=

∫
ik

k∑
i=1

∂g

∂ui
dui ∧ du1 ∧ · · · ∧ d̂uj ∧ · · · ∧ duk)

= (−1)j−1

∫
ik

∂g

∂uj
du1 ∧ · · · ∧ duk

= (−1)j−1

∫
Ck

∂g

∂uj
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This completes the proof for M = Rk and c = ik.

3. In the general case, again by linearity we may assume q = c is a The general case follows from the
special case simply by unravelling the

formalism. Thus the Local Stokes’

Theorem really is just Fubini’s Theo-
rem in disguise.

singular k-cube. Then∫
∂c

ω =

k∑
i=1

(−1)i
(∫

fic

ω −
∫
bic

ω

)

=

k∑
i=1

(−1)i
(∫

c◦fi
ω −

∫
c◦bi

ω

)

=

k∑
i=1

(−1)i
(∫

Ck−1

(c ◦ fi)
∗ω −

∫
Ck−1

(c ◦ bi)
∗ω

)

=

k∑
i=1

(−1)i
(∫

Ck−1

f∗i (c∗ω)−
∫
Ck−1

b∗i (c
∗ω)

)

=

k∑
i=1

(−1)i
(∫

fi

c∗ω −
∫
bi

c∗ω

)
=

∫
∂ik

c∗ω

=

∫
ik

d(c∗ω)

by the previous step. But since c∗ ◦ d = d ◦ c∗ by Lemma 23.4, we have∫
ik

d(c∗ω) =

∫
ik

c∗(dω) =

∫
c

dω,

where we used Remark 25.9 at the end. This completes the proof.



Will J. Merry

LECTURE 27

The Poincaré Lemma and the de Rham
Theorem

In this final lecture we return to the de Rham cohomology of a smooth

manifold. We show that de Rham cohomology is a homotopy invari-

ant, and use this to prove the Poincaré Lemma, which states that

any closed form is locally exact. In the bonus section we prove the de

Rham Theorem, which can be thought of as a massive generalisation

of the homotopy invariance property.

We begin with the following application of the global version of

Stokes’ Theorem.

Proposition 27.1. Let (M, o) be a oriented manifold, and let ω ∈ Recall by the convention at the end of
Lecture 24, all manifolds are assumed

not to have boundary unless explicitly

stated to the contrary.

Ωm−1
c (M). Then

∫
M,o

dω = 0.

Proof. M is also a smooth manifold with boundary whose boundary

is the empty set. The claim is now thus immediate from the Global

Stokes’ Theorem 26.16.

Corollary 27.2. Let M be an oriented connected compact smooth

manifold. Then Hm
dR(M) 6= 0.

Proof. Let µ be a volume form. Then for any orientation preserving

cube, we have
∫
c
µ > 0. Thus

∫
M,o

µ > 0. The form µ is closed (as

dµ = 0 for dimension reasons). If µ was exact then
∫
M,o

µ = 0 by

Proposition 27.1. Thus µ is a closed non-exact form, and hence defines

a non-zero element in Hm
dR(M).

Remark 27.3. In the bonus section below we will improve Corol-

lary 27.2 and show that for an oriented connected compact smooth

manifold M the class [µ] actually generates Hm
dR(M), and hence

Hm
dR(M) ∼= R. Together with Lemma 23.3, this implies that

H0
dR(M) ∼= Hm

dR(M).

This is not an accident. It is a special case of Poincaré Duality

(together with Universal Coefficients Theorem for Cohomology). We

briefly discuss this at the end of the bonus section.

The main step in proving the homotopy invariance property of de

Rham cohomology is the following innocuous looking statement.

Proposition 27.4. Let M be a smooth manifold. Define for t ∈ [0, 1]

a smooth map Here we view M × [0, 1] as a smooth
manifold with boundary.

et : M →M × [0, 1], et(x) := (x, t).

Then the induced maps on de Rham cohomology

e∗0, e
∗
1 : Hk

dR(M × [0, 1])→ Hk
dR(M)

coincide for all 0 ≤ k ≤ m+ 1.

Last modified: July 17, 2021.
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Proof. We prove the result in two steps.

1. Fix 1 ≤ k ≤ m+ 1. In this step we construct a map

h : Ωk(M × [0, 1])→ Ωk−1(M)

such that for every differential k-form ω ∈ Ωk(M × [0, 1]), one has

h(dω) + d(hω) = e∗1ω − e∗0ω

as elements of Ωk(M). Let Y denote the vector field on M × [0, 1]

whose value at (p, t) is

Y (p, t) =

(
0,
∂

∂t

∣∣∣
t

)
.

(Compare (9.3) in Lecture 9 – we are using slightly different notation

to simplify the formulae to come). The desired map h is then given by

h(ω) :=

∫ 1

0

e∗t iY ω dt, (27.1)

for ω ∈ Ωk(M × [0, 1]). That is, for any p ∈ M , h(ω)p ∈
∧k−1

T ∗pM

given by

h(ω)p =

∫ 1

0

e∗t (iY ω)(p,t) dt,

where the integrand is thought of as a function of t on the vector This is just a normal Riemann inte-

gral on a vector space, not an integral

on a manifold!
space

∧k−1
T ∗pM . By choosing local coordinates, we see that the inte-

gral defines a smooth (k − 1)-form on M . To compute d(hω) it suffices

to work locally. In local coordinates (xi) we can express h(ω) as a sum

h(ω) =
∑
I

(∫ 1

0

fI(p, t) dt

)
dxI , (27.2)

using the notation introduced in the proof of Theorem 23.1. Applying

d to such a term and differentiating under the integral sign gives This is sometimes referred to as

the Leibniz integral rule. In this

expression we include the summation
signs for clarity.d(hω) =

∑
I

∑
j

∂

∂xj

(∫ 1

0

fI(p, t) dt

)
dxj ∧ dxI

=
∑
I

∫ 1

0

∑
j

∂fI
∂xj

(p, t) dt

 dxj ∧ dxI .

By comparing (27.1) and (27.2), we see from this last expression that

d(hω) =

∫ 1

0

d
(
e∗t iY ω

)
dt.

Thus using Lemma 23.4 and Cartan’s Magic Formula (Theorem 23.12)

we see that

h(dω) + d(hω) =

∫ 1

0

(
e∗t iY dω + d

(
e∗t iY ω

))
dt

=

∫ 1

0

e∗t
(
iY dω + d(iY ω)

)
dt

=

∫ 1

0

e∗tLY ω dt.

https://en.wikipedia.org/wiki/Leibniz_integral_rule


3

Let Φt denote the flow of Y . Then Φt(x, s) = (x, t + s), and thus

et = Φt ◦ e0 and we can compute the Lie derivative as

e∗tLY ω = e∗0Φ∗t
(
LY ω

)
= e∗0

( d
dt

Φ∗tω
)

=
d

dt
e∗0Φ∗tω

=
d

dt
e∗tω.

where the second equation used Problem K.5. Thus by the (normal)

Fundamental Theorem of Calculus we obtain

h(dω) + d(hω) =

∫ 1

0

d

dt
e∗t (ω) dt

= e∗1ω − e∗0ω.

2. We now complete the proof. Suppose [ω] ∈ Hk
dR(M × [0, 1]). Fix

a representative ω of [ω]. Then

e∗1[ω]− e∗0[ω] = [h(dω)] + [d(hω)].

Since ω is closed, the first term is zero. The second term is exact, and

hence zero in Hk
dR(M). This completes the proof.

Why is Proposition 27.4 useful? The next statement makes this

abundantly clear.

Theorem 27.5. Let M and N be two smooth manifolds and suppose

ϕ and ψ are two homotopic smooth maps from M to N . Then the

induced maps ϕ∗ and ψ∗ on the de Rham cohomology groups are the

same.

Proof. To say that ϕ and ψ are homotopic means there is a continu-

ous map H : M × [0, 1] → N such that H(·, 0) = ϕ and H(·, 1) = ψ.

In fact, by the Homotopy Whitney Approximation Theorem 7.17, we

may assume H is a smooth map. Then the induced maps on de Rham

cohomology satisfy

ϕ∗ = (H ◦ e0)∗

= e∗0 ◦H∗

= e∗1 ◦H∗

= (H ◦ e1)∗

= ψ∗,

where the third equality used Proposition 27.4. This completes the

proof.

Two topological spaces X and Y are said to be homotopy equiv-

alent if there exist continuous maps f : X → Y and g : Y → X such

that both f ◦g and g◦f are homotopic to the respective identity maps.

Corollary 27.6 (Homotopy invariance of de Rham cohomology). Let

M and N be smooth manifolds that are homotopy equivalent. Then

M and N have isomorphic de Rham cohomology groups.
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Proof. Let f : M → N and g : N → M be continuous maps such that

f ◦ g and g ◦ f are homotopic to the identity maps. By the Whitney

Approximation Theorem 7.13 we can find smooth maps ϕ : M → N

and ψ : N → M such that ϕ is homotopic to f and ψ is homotopic

to g. Then ϕ ◦ ψ and ψ ◦ ϕ are homotopic to the identity maps. By

Theorem 27.5, (ϕ ◦ ψ)∗ and (ψ ◦ ϕ)∗ coincide with the maps induced

by the identity. Since id∗ is clearly the identity, we see that ϕ∗ is an

inverse to ψ∗. The claim follows.

Remark 27.7. A particular case of Corollary 27.6 tells us that the

de Rham cohomology cannot see the smooth structure on a topolog-

ical manifold M . This is surprising, since the data used to define it

(the differential forms) very much depend on the choice of smooth

structure.

A topological space is contractible if it is homotopy equivalent to

a point.

Corollary 27.8. Let M be contractible. Then Hk
dR(M) = 0 for all

k ≥ 1.

Proof. It is clear this is true for M equal to a point. Now apply

Corollary 27.6.

Remark 27.9. This shows that de Rham cohomology cannot dis-

tinguish Euclidean spaces: Hk
dR(Rm) is independent of m (since all

Euclidean spaces are contractible). Thus a lot of information is lost

when passing to de Rham cohomology.

Perhaps the most useful corollary of this is the following statement,

which is classically called the Poincaré Lemma.

Corollary 27.10 (The Poincaré Lemma). Let M be a smooth man-

ifold and let ω ∈ Ωk(M) be a closed differential form of degree k > 0.

For any point p ∈ M there exists a neighbourhood U of p such that

ω|U is an exact form in Ωk(U).

Proof. Every point in a manifold admits a contractible neighbour-

hood.

And with that we have reached the end Differential Geometry I.

Enjoy your winter vacation, and see you next semester!

Bonus Material for Lecture 27

In this bonus section we prove that the de Rham cohomology agrees

with singular cohomology – this is usually referred to as the de Rham
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Theorem. There are many different ways to prove this result. Per-

haps the neatest is via sheaf cohomology, but this is a little bit too far

afield.

This bonus section assumes you are familiar with singular

(co)homology and some basic homological algebra.

Convention. All our homology and cohomology groups should be

understood to have coefficients in R for the remainder of this section.

We will not comment on this further.

Let X be a topological space. You are hopefully familiar with the

singular chain complex of X. This is normally defined by looking at

singular simplices (i.e. continuous maps ∆k → X, where ∆k is the

kth standard simplex). However one can equally well carry out the

construction using singular cubes instead. The resulting algebraic

invariant is the same (more on this later). Let us recall the definitions

in the continuous category.

Definition 27.11. Let X be a topological space. A singular k-cube

in X is a continuous map c : Ck → X. We let Qk(X) denote the

(infinite-dimensional) vector space with basis all the singular k-cubes

in X.

Remark 27.12. Note in the continuous category there is no need to

require c to extend to a map on an open neighbourhood.

Definition 27.13. A singular k-cube c : Ck → X is said to be de-

generate if there exists 1 ≤ i ≤ k such that c does not depend on ui.

Otherwise c is said to be non-degenerate. We let Dk(X) denote the

subspace of Qk(X) generated by the degenerate cubes, and we let

Q̄k(X) := Qk(X)
/
Dk(X)

denote the quotient space.

Thus for instance

c : C3 → R, c(u1, u2, u3) := u1 + u3

is a degenerate singular 3-cube in R. The front and back faces of a

cube are defined in the same way as Definition 25.18, and this allows

us to define the boundary operator as before:

Definition 27.14. Let c : Ck → X be a singular k-cube for k > 0. We

define the boundary of c, written ∂c, to be the element of Qk−1(X)

given by

∂c :=

k∑
i=1

(−1)i(fic− bic).

We define the boundary of a 0-cube to be the real number 1. We then

extend ∂ to arbitrary k-chains by linearity. Thus we may think of ∂ as As before, this works for k = −1 too if

we define Q−1(X) := R.a linear map Qk(X)→ Qk−1(X) for all k ≥ 1.
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Note that if a cube c is non-degenerate then so is ∂c. Thus we can

also regard ∂ as a linear map

∂ : Q̄k(X)→ Q̄k−1(X), k ≥ 0.

The same argument from Proposition 25.23 gives:

Proposition 27.15. The boundary operator squares to zero: ∂2 = 0.

Thus (Q̄•(X), ∂) is a chain complex of vector spaces.

Definition 27.16. The cubical singular homology groups

Hcube
k (X;R) are defined to be the homology of this chain complex.

Remark 27.17. Why bother with quotienting out by the degener-

ate cubes? After all, (Q•(X), ∂) is also a chain complex, so we could

just take its homology instead. To see this why this quotienting out

the degenerate cubes is superior, consider the case where X is a one

point space {∗}. It is easy to see that Hcube
k ({∗}) = 0 for k > 0 and

Hcube
0 ({∗}) = R, as one would hope – this is a necessary require-

ment in order for Hcube
• to be “a homology theory” in the sense of

Eilenberg-Steenrod. However if one does not quotient out by degener- Exercise: Why?

ate cubes, this ceases to be the case.

All the properties of the singular chain complex (built with singular

simplices) continue to hold without change (homotopy invariance, long

exact sequence, excision. Mayer-Vietoris, etc).

Remark 27.18. In fact, sometimes the proof gets easier for singular

cubes. For instance, one of the key steps in establishing excision for

singular simplices is the concept of barycentric subdivision, which

allows one to chop up a singular simplex into smaller ones whose di-

ameter can be made arbitrarily small. This is quite involved, and

rather unpleasant. On the other hand, it is not very hard to work out

how to chop up a singular cube into smaller ones!

Remark 27.19. For us the main reason we preferred cubes on sim-

plices in Lecture 22 is that it is much easier to define an integral over

a cube (it is just a nested sequence of integrals
∫ 1

0
· · ·
∫ 1

0
), whereas this

is messier for simplices.

Remark 27.20. At a much more advanced level, there are compelling

reasons both to prefer using simplices and to prefer using cubes. This

concerns cubical sets and simplicial sets in homotopy theory. How-

ever this all goes way beyond the course, so we won’t discuss it.

It is not completely obvious why the resulting cubical singular

homology groups agree with the normal singular homology groups. It

can be proved directly using the Acyclic Models Theorem, or it can

deduced from the uniqueness result for Eilenberg-Steenrod homology

theories.

Let us now return to manifolds. If M is a smooth manifold then the

vector spaces Qk(M) defined today do not coincide with the vector

spaces Qk(M) defined in Lecture 22. This is because in Lecture 22
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we insisted on smooth maps. Let us temporarily write Q∞k (M) for

the smooth singular k-cubes, and Hcube,∞
k (M) for the homology of

the chain complex (Q̄∞k (M), ∂). It is not obvious that the two groups

coincide, but luckily they do:

Theorem 27.21. Let M be a smooth manifold. Then

Hcube
k (M ;R) ∼= Hcube,∞

k (M ;R), ∀ k ≥ 0.

Proof (Sketch). The proof is a standard induction-type argument on

the complexity of M . We proceed in six steps.

1. Suppose M is a single point. This is trivial.

2. Suppose M is an open contractible subspace of Rm. This fol-

lows from Step 1 and the Whitney Approximation Theorem 7.13,

which allows us to assume the contraction of M is smooth.

3. Suppose M = U ∪ V , where U and V are open in M and

the theorem is assumed to be true for U, V and U ∩ V . We apply

naturality of the Mayer-Vietoris sequence to see that the following

diagram commutes, where we omit the coefficient group R so that the

diagram fits on the page:

Hcube
k (U ∩ V ) Hcube

k (U)⊕Hcube
k (V ) Hcube

k (M) Hcube
k−1 (U ∩ V )

Hcube,∞
k (U ∩ V ) Hcube,∞

k (U)⊕Hcube,∞
k (V ) Hcube,∞

k (M) Hcube,∞
k−1 (U ∩ V )

The Five Lemma then completes the proof.

4. Now assume M =
⋃
i Ui, where Ui ⊂ Ui+1 is an open set, and

the theorem is true for each Ui. Then the theorem follows for M via

an abstract argument using filtered colimits:

Hcube
k (M ;R) ∼= lim←−H

cube
k (Ui;R)

= lim←−H
cube,∞
k (Ui;R)

∼= Hcube,∞
k (M ;R).

5. Now assume M is an arbitrary open subset of Rm. Then we can

write M as a countable union of convex open subsets. For any finite

union, the theorem holds by applying Step 3 and induction, and then

Step 4 gives the result for M itself.

6. The general case: since we can cover M by charts, it follows

from Step 5 and Zorn’s Lemma that there exists a maximal open

subset U ⊂ M for which the theorem is true. If U 6= M , then we an

find a chart domain V such that V is not contained in U . Then by

Step 3 and Step 5, the theorem is true for U ∪ V . This contradicts

maximality of U .

With this out of the way, we shall drop the ∞ from the notation

and just write Q̄k(M) for the groups defined in Lecture 22. Let us

now recall how one constructs the cohomology groups from the homol-

ogy groups.
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Definition 27.22. Let X be a topological space. Set

Qk(X) := Hom(Q̄k(X);R)

and define d : Qk(X)→ Qk+1(X) by

d(a)(q) := a(∂q), α ∈ Qk(X), q ∈ Q̄k+1(X).

Then d2 = 0, and hence (Q•(X), d) is cochain complex. Its homology

is denoted by Hk
cube(X;R) and referred to as the cubical singular

cohomology of X.

The next lemma is just a restatement of Corollary 26.4.

Lemma 27.23. Let M be a smooth manifold. Then integration induces

a cochain map

Φ: Ω•(M)→ Q•(M), Φ[ω][q] :=

∫
q

ω.

We can now state the main result of the lecture.

Theorem 27.24 (The de Rham Theorem). The integration cochain

map Φ induces a natural isomorphism Hk
dR(M)→ Hk

cube(M ;R).

Singular cohomology is a topological invariant. Thus Corollary 27.6

is an immediate consequence of the de Rham Theorem. Moreover the

de Rham Theorem implies that when M is compact and oriented,

Hm
dR(M) ∼= R, since the same is true of singular cohomology (cf.

Remark 27.3).

Proof of the de Rham Theorem (Sketch). The proof proceeds in the

same fashion as Theorem 27.21.

1. Suppose M is an open convex subset of Rm. Then the theo-

rem follows from Corollary 27.8 and standard properties of singular

cohomology.

2. Suppose M = U ∪ V , where U and V are open in M and the

theorem is assumed to be true for U, V and U ∩ V . The theorem will

gain follow for M via a standard argument using the Mayer-Vietoris

sequences and the Five Lemma, apart from the fact that we have not

constructed the Mayer-Vietoris sequence in de Rham cohomology. Let

us rectify this. We denote by

ıU : U ∩ V ↪→ U, ıV : U ∩ V ↪→ V

and

eU : U ↪→M, eV : V ↪→M

the inclusions. One then defines

α : Ω•(M)→ Ω•(U)⊕ Ω•(V ), α(ω) := (e∗U (ω), e∗V (ω))

and

β : Ω•(U)⊕ Ω•(V )→ Ω•(U ∩ V ), β(ω1, ω2) := ı∗U (ω1)− ı∗V (ω2).
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Then we claim that

0→ Ω•(M)
α−→ Ω•(U)⊕ Ω•(V )

β−→ Ω•(U ∩ V )→ 0

is exact. The only claim that isn’t clear is why β should be surjec-

tive. To see this, let {κU , κV } be a partition of unity subordinate

to the open cover {U, V }. Then if ω is a k-form on U ∩ V , we can

think of κUω and κV ω as k-forms on U and V respectively, and

β(κU ω,−κV ω) = ω.

3. Now assume M =
⋃
i Ui, where Ui ⊂ Ui+1 is an open set such

that Ūi is compact for each i, and assume the theorem is true for each

Ui. Then the theorem is also true for M . The proof of this is consid-

erably harder than the proof of Step 4 of Theorem 27.21, since now

we are working with cohomology, and thus instead of filtered colimits

we have filtered limits. It is a sad fact of life that limits are less well

behaved than colimits, and are not exact functors from diagrams of

vector spaces to diagrams of vector spaces. Consequently we need to

worry about the first right derived functors R1 lim←−. But this is not too

bad: since Ūi is compact one has R1 lim←−Ωk(Ui) = 0 for all k and i, and

thus we have a natural short exact sequence

0→ R1 lim←−H
k−1
dR (Ui))→ Hk

dR(M)→ lim←−H
k
dR(Ui)→ 0.

A similar sequence holds for Hk
cube(M), and naturality of the two

sequences allow us to conclude this step.

4. Now assume M is an arbitrary open subset of Rm. Then we can

write M as a countable union of convex open subsets. For any finite

union, the theorem holds by applying Step 2 and induction, and then

Step 3 gives the result for M itself.

5. The general case: this follows from the previous step, since

M has a countable basis of open sets diffeomorphic to open sets of

Euclidean space. The proof is complete.

From a purely topological point of view, the thing that makes man-

ifolds “special” about manifolds is the following duality between ho-

mology and cohomology.

Theorem 27.25 (Poincaré Duality). Let M be a compact connected

orientable manifold M . Then

Hk
cube(M ;R) ∼= Hcube

m−k(M ;R),

and hence there is a non-degenerate pairing

Hk
cube(M ;R)×Hm−k

cube (M ;R)→ R.

Poincaré Duality is false if we move outside the category of man-

ifolds (eg. to finite cell complexes). For de Rham cohomology, this

pairing is particularly easy to understand: it is induced from the pair-

ing

Ωk(M)× Ωm−k(M)→ R, (ω, θ) 7→
∫
M

ω ∧ θ.

We leave it to you to investigate how to prove this.



Will J. Merry

LECTURE 28

Connections

Welcome to Differential Geometry II!

Differential Geometry I introduced the basics of smooth manifolds

and bundle theory. Differential Geometry II will primarily be con-

cerned with two extra pieces of data one can endow a manifold or

bundle with: a connection and a Riemannian metric. The study

of connections on bundles is usually called gauge theory, and the

study of Riemannian manifolds – that is, smooth manifolds equipped

with a Riemannian metric – is referred to as Riemannian geometry.

We begin with connections and gauge theory. To motivate the

notion of a connection, let consider the following rather simple idea.

Let M be a smooth manifold. Suppose f ∈ C∞(M) is a smooth

function and X ∈ X(M) is a vector field. We can feed f to X to get

another smooth function X(f) = df(X). Now consider the trivial

one-dimensional vector bundle M × R → M over M . Recall from part

(iii) of Examples 20.2 that there is a bijective correspondence between

smooth functions f on M and sections s ∈ Γ(M × R). Explicitly, any

section s can be uniquely written as

s(p) = sf (p) = (p, f(p))

for a smooth function f . Thus the operation f 7→ X(f) can also

be thought of as an operator on the space of sections of the trivial

bundle. We write this operator as ∇X :

∇X : Γ(M × R)→ Γ(M × R),

sf 7→ sX(f).

The operator ∇X is local operator in the sense of Definition 20.16 but

– provided X is not identically zero – it is not a point operator.

Next, note that the value of ∇Xs at a point p depends on X only

via the tangent vector X(p). Indeed, if γ : (−ε, ε) → M is any smooth

curve with γ(0) = p and γ̇(0) = X(p) then (up to identifying sf with

s) we have

(∇Xsf )(p) = dfp(X(p))

=
d

dt

∣∣∣
t=0

f(γ(t))

= lim
t→0

f(γ(t))− f(γ(0))

t
. (28.1)

This shows that we can think of ∇Xs as “differentiating s in the direc-

tion of X”.
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Let us now see what goes wrong with extending this idea to an

arbitrary vector bundle. Let π : E →M be a vector bundle. As before,

let X be a vector field on M and let s ∈ Γ(E). Fix a point p ∈ M and

let γ denote a smooth curve with γ(0) = p and γ̇(0) = X(p). We can

again attempt to “define” a new section via (28.1)

“(∇Xs)”(p) = lim
t→0

s(γ(t))− s(γ(0))

t
. (28.2)

A moment’s thought reveals that (28.2) is nonsense: the vector s(γ(t))

belongs to the vector space Eγ(t), and for different values of t these are

different vector spaces. Thus is simply does not make sense to add or

subtract them from one another. One could use a local trivialisation of

the bundle around γ(0) to identify all the fibres with one fixed vector

space, but unfortunately the resulting vector would depend on the

choice of trivialisation.

Compare this to our original problem right at the beginning of Lec-

ture 1 when we motivated manifolds: on an arbitrary topological space

one cannot simply “add” points together. On a vector bundle whilst

each fibre has a linear structure, in general each fibre is a different

vector space, and thus we cannot add points.

The reason this worked on the trivial bundle M × R → M was that

in this case each fibre {p} × R was canonically isomorphic to R via the

second projection. Equivalently, the identification s = sf of sections of

M × R with smooth functions on M was canonical – no choices were

needed. This is also reflected in the fact that on the trivial bundle ∇X
can be identified with the Lie derivative LX .

More generally, the process we described at the start of the lecture

works on any trivial bundle, and this leads us to the first definition of

the course.

Definition 28.1. Let M be a smooth manifold and let E = M × Rn

denote the trivial bundle over M . The trivial connection on E

associates to every vector field X on M the operator

∇X : Γ(E)→ Γ(E)

given by

(∇Xsf )(p) := lim
t→0

f(γ(t))− f(γ(0))

t
,

where we identify each section s = sf with a smooth function f : M →
Rn.

Thus (by definition) any trivial vector bundle admits a trivial con-

nection. In fact, the converse is true: if E admits a trivial connection

then E is necessarily a trivial bundle, although this will take us some

time to prove (see Proposition 33.2), and will require us to give an

alternative definition of a connection that does not explicitly reference

the trivialisation.

We first define the weaker notion of a preconnection, which will

work in an arbitrary fibre bundle. As with many of the concepts we’ve
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seen in Differential Geometry, the relation between the formal defi-

nition of a connection and Definition 28.1 will at first sight not be so

obvious. We will rectify this in Lecture 32.

Definition 28.2. Let L → E
π−→ M be a fibre bundle over a smooth

manifold M with fibre L. A preconnection on E is a distribution This terminology is not standard.
Some authors call what we call a pre-

connection an Ehresmann connection.

However this won’t matter, since we
will shortly upgrade a preconnection

to a genuine connection, and then

will not have cause to speak about
preconnections anymore.

∆ on E (i.e. a vector subbundle of the tangent bundle TE) with the

additional property that for every u ∈ E the map Dπ(u)|∆u
: ∆u →

Tπ(u)M is a linear isomorphism.

Let us unpack this a bit. Requiring that Dπ(u)|∆u
: ∆u → Tπ(u)M

is a linear isomorphism for every u ∈ E is the same thing as saying

that the restriction of Dπ : TE → TM to ∆ is a vector bundle isomor-

phism along π : E →M in the sense of Definition 17.9.

Recall the notion of the pullback bundle from Problem H.4. We

pullback the tangent bundle of M along the footpoint map of E: When there are multiple bundles
in play, we will label the various

footpoint maps where needed.π∗TM TM

E M

pr2

pr1 πTM

π

Since TM → M is a vector bundle, by part (iv) of Problem H.4 the

bundle π∗TM → E is a vector bundle (even when E itself is only a

fibre bundle). Explicitly:

π∗TM =
{

(u, ξ) ∈ E × TM | ξ ∈ Tπ(u)M
}
,

and hence (π∗TM)u ∼= Tπ(u)M .

Yet another way to express Definition 28.2 uses a notion from

Problem Sheet I instead. Recall from Problem I.5 that the verti-

cal bundle of E is the vector bundle V E = kerDπ. If M has di-

mension m and L has dimension l then E has dimension m + ` and

V E → E is a vector subbundle of TE of rank l. If ∆ is preconnec-

tion on E then ∆ → E is a vector subbundle of TE of rank m. Since

∆u ∩ kerDπ(u) = {0} we therefore have

TE ∼= ∆⊕ V E.

We summarise this with the following:

Lemma 28.3. Let L → E
π−→ M be a fibre bundle, and suppose ∆ is a

distribution on E. The following are equivalent:

(i) ∆ is a preconnection,

(ii) Dπ induces a vector bundle isomorphism ∆ ∼= π∗TM ,

(iii) TE ∼= ∆⊕ V E.

So much for preconnections. If we instead start with a vector bun-

dle, we can impose an additional condition on a preconnection, which

gives rise to a connection. Recall from part (ii) of Examples 10.9 that

R \ {0} is a Lie group under multiplication. There is a canonical action

of R \ {0} on any vector bundle.
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Definition 28.4. Let π : E → M be a vector bundle. Fix p ∈ M and

c ∈ R \ {0}. We define µc : Ep → Ep by

µc(v) := cv,

where the right-hand side denotes scalar multiplication in the vector

space Ep. It is immediate that µ defines a fibre preserving action

which we simply call scalar multiplication.

It is convenient to extend this definition to work for c = 0 by

setting µ0 to be the zero map in each fibre. Note however that µ is

not an action of the Lie group R under addition.

Definition 28.5. Let π : E → M be a vector bundle over a smooth Recall for a vector bundle we typically
write a generic point with the letter v

rather than u.
manifold M . A connection ∆ on E is a preconnection with the addi-

tional property that for every v ∈ E and every c ∈ R, one has

Dµc(v)(∆v) = ∆cv. (28.3)

The true significance of this condition won’t become apparent un-

til we discuss connections on principal bundles in Lecture 39 (see

Proposition 39.10 in particular), although see Problem L.1 for one key

consequence of (28.3).

For now, let us now prove that (pre)connections always exist.

Theorem 28.6. Every fibre bundle admits a preconnection. Every

vector bundle admits a connection.

Proof. We prove the result in two steps.

1. We first prove the result when E = M × L is the trivial bundle.

Let ιq : M →M × L denote the map p 7→ (p, q), and set

∆(p,q) := Dιq(p)(TpM).

This is a preconnection. If in addition L = V is a vector space then

this is a connection, since µc ◦ ιv = ιcv and thus

Dµc(p, v)(∆(p,v)) = Dµc(p, v) ◦Dιv(p)(TpM)

= Dιcv(p)(TpM)

= ∆(p,cv).

2. For the general case, we use a partition of unity argument. Let

{Ua | a ∈ A} denote an open cover of M such that E is trivial over

each Ua, and let {κa | a ∈ A} denote a partition of unity subordinate

to this cover. Let ∆a denote a (pre)connection on π−1(Ua), whose

existence is guaranteed by Step 1. Given p ∈M and u ∈ Ep, define

`u : TpM → TuE, `u(ξ) :=
∑

{a∈A|p∈Ua}

κa(p)ζa,

where ζa is the unique vector in ∆a
u such that Dπ(u)ζa = ξ. Then `u

is a linear map such that Dπ(u) ◦ `u = idTpM . We then define

∆p := `u(TpM).

This is a (pre)connection.
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We can use (pre)connections to lift vectors from TM to TE.

Definition 28.7. Let π : E → M be a fibre bundle, and let ∆ be a

preconnection on E. The splitting TE = ∆⊕V E allows us to uniquely

express any vector ζ ∈ TE as

ζ = ζh + ζv

where if ζ ∈ TpE then ζh ∈ ∆p and ζv ∈ VpE. We call ζh the horizon-

tal component of ζ and ζv the vertical component of ζ. A vector

is horizontal if ζ = ζh and vertical if ζ = ζv.

The property of being horizontal depends on the specific choice of

preconnection, but the property of being vertical does not.

Definition 28.8. Let π : E → M be a fibre bundle, and let ∆ be

a preconnection on E. Let p ∈ M , u ∈ Ep and ξ ∈ TpM . The

horizontal lift of ξ at p is the unique horizontal vector ξ ∈ TuE such

that Dπ(u)ξ = ξ.

Any horizontal lift is a horizontal vector. Conversely any horizontal

vector is the horizontal lift of some tangent vector on M .

Since u 7→ ∆u is smooth (this is true of any distribution) we can

also lift vector fields.

Definition 28.9. Let π : E → M be a fibre bundle, and let ∆ be a

preconnection on E. If X ∈ X(M) is a vector field then the horizon-

tal lift of X is the unique vector field X ∈ X(E) such that X(p) is the

horizontal lift of X(π(p)) at p for each p ∈ E.

The following result is almost immediate.

Lemma 28.10. Let π : E → M be a fibre bundle and let ∆ be a

preconnection on E. Given X,Y ∈ X(M) and f ∈ C∞(M), we have:

(i) X + Y = X + Y ,

(ii) fX = (f ◦ π)X,

(iii) [X,Y ] = [X,Y ]h.

Proof. The first two statements are obvious. For the third we observe

that

Dπ[X,Y ] = [X,Y ] = Dπ[X,Y ],

and thus [X,Y ] = [X,Y ]h by definition of a preconnection.

We conclude this lecture with a brief discussion of the bigger pic-

ture:
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What is a connection? Connections on vector bundles can

be defined in many different ways. In this course we will see at

least five:

(i) as distributions ∆ ⊂ TE,

(ii) as parallel transport systems P on E,

(iii) as covariant derivative operators ∇X on Γ(E),

(iv) in local coordinates via Christoffel symbols Γkij ,

(v) via principal bundles $ ∈ Ω1(P, g)

Today we did method (i). This is perhaps the cleanest and quickest

way to define connections, but it is not always the most useful. We Compare this to how we initial de-
fined tangent vectors as derivations on

the space of germs
will cover method (ii) over the next two lectures. The motivational

discussion at the start of the lecture concerns method (iii). We will

come to this in Lecture 32. Arguing in local coordinates (method Compare Problem I.1.

(iv)) is ugly, but useful for computations. We will eventually prove

the equivalence of methods (i)–(iv). The principal bundle approach is because principal bundles are more

general than vector bundles, cf. the

discussion at the end of Lecture 18.
more general; however, for matrix Lie groups method (v) is equivalent

to all the others. We will prove this in Lecture 40.

Bonus Material for Lecture 28

Here is another take on Lemma 28.3, that uses a little bit of homologi-

cal algebra.

Associated to any fibre bundle π : E → M is a short exact sequence

of bundles

0→ V E
ι−→ TE

Dπ−−→ π∗TM → 0, (28.4)

where the first map is inclusion and the second map is induced by Dπ.

It follows from basic homological algebra (actually, in this case, linear

algebra) that this sequence splits. That is, there exists a vector bundle

homomorphism

Φ: π∗TM → TE (28.5)

such that Dπ ◦ Φ = idπ∗TM . If we set ∆ := im Φ then ∆ is a pre-

connection on E. In this way, we see that a choice of preconnection

corresponds to a choice of splitting of (28.4). In general there is no

canonical choice of splitting of (28.4) – and hence also no canonical

choice of connection.

Finally, the existence of a splitting on the right-hand map of (28.4)

is equivalent to the existence of a splitting on the left-hand map. That

is, a choice of preconnection ∆ is also equivalent to a bundle homo-

morphism Ψ: TE → V E such that ι ◦ Ψ = idV E ; i.e. an idempotent
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bundle homomorphism Ψ: TE → TE such that im Ψ = V E; this

means that Ψ is a projection operator TE → V E.

Using the the notion of a bundle-valued form (defined in Lecture

36), we arrive at what is arguably the single cleanest definition.

Lemma 28.11. A preconnection ∆ on E is equivalent to a bundle-

valued 1-form Ψ ∈ Ω1(E, V E) such that Ψ ◦Ψ = Ψ and im Ψ = V E.



Will J. Merry

LECTURE 29

Parallel Transport

In this lecture we define parallel transport axiomatically. Next

week we will prove that the existence of a parallel transport system is

equivalent to the existence of a connection, and thus, going forward we

will view the two interchangeably.

We begin by showing that (pre)connections behave nicely under

pullbacks. Let ϕ : M → N be a smooth map, and suppose L → E
π−→

N is a fibre bundle. Recall from part (ii) of Problem H.4 that the

tangent space of the pullback bundle ϕ∗E is given by

T(p,u)(ϕ
∗E) =

{
(ξ, ζ) ∈ TpM × TuE | Dϕ(p)ξ = Dπ(u)ζ

}
. (29.1)

Suppose ∆ is a (pre)connection on E. We define

ϕ∗∆ := (D pr2)−1(∆)

that is,

(ϕ∗∆)(p,u) :=
{

(ξ, ζ) ∈ T(p,u)(ϕ
∗E) | D pr2(p, u)(ξ, ζ) ∈ ∆u

}
.

Proposition 29.1. ϕ∗∆ is a preconnection on ϕ∗E. If E is a vector

bundle and ∆ is a connection on E then ϕ∗∆ is a connection on the

vector bundle ϕ∗E.

Proof. It follows from (29.1) that V (ϕ∗E) = {0} × V E and that ϕ∗∆

is given by

(ϕ∗∆)(p,u) := {(ξ, ζ) ∈ TpM ×∆u | Dϕ(p)ξ = Dπ(u)ζ} .

Since any ζ ∈ TE decomposes uniquely as ζh + ζv ∈ ∆ ⊕ V E, any

(ξ, ζ) ∈ T (ϕ∗E) decomposes uniquely as

(ξ, ζ) = (ξ, ζh) + (0, ζv) ∈ ϕ∗∆⊕ V (ϕ∗E).

This shows that ϕ∗∆ is complementary to V (ϕ∗E), and thus ϕ∗∆ is a

preconnection on ϕ∗E. If E is a vector bundle and ∆ is a connection

then so is ϕ∗∆, since if (ξ, ζ) ∈ (ϕ∗∆)(p,u) we have

Dµc(p, u)(ξ, ζ) =
(
ξ,Dµc(u)ζ

)
∈ ∆(p,cu).

This completes the proof.

Now for some more terminology. In the last lecture we defined what

it meant for a tangent vector (or a vector field) to be horizontal. Now

we explain what it means for a section to be horizontal.

Definition 29.2. Let π : E →M be a fibre bundle with preconnection

∆. A section s ∈ Γ(E) is said to be horizontal if

Ds(p)(TpM) = ∆s(p), ∀ p ∈M. (29.2)

Similarly a local section s ∈ Γ(U,E) is horizontal if the above holds for

all p ∈ U .

Last modified: July 17, 2021.
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Remark 29.3. If s is any section, then differentiating the equation

π ◦ s = id tells us that Ds(p)(TpM) is a subspace of dimension m =

dimM inside Ts(p)E. Since also dim ∆s(p) = m, we see that

Ds(p)(TpM) ⊆ ∆s(p) ⇒ Ds(p)(TpM) = ∆s(p).

Thus we can replace the equality sign in (29.2) with ⊆.

Next, we introduce the idea of a section along a map.

Definition 29.4. Suppose π : E → N is a fibre bundle over a smooth

manifold and ϕ : M → N is a smooth map. A section of E along

ϕ is a smooth map s : M → E such that s(p) ∈ Eϕ(p). We denote by

Γϕ(E) the space of such sections. If U ⊂M is an open set then we can

also speak of the space Γϕ(U,E) of smooth maps s : M → E such that

s(p) ∈ Eϕ(p) for all p ∈ U ; we refer to these as local sections along

ϕ.

Sections along a map are not really anything new:

Lemma 29.5. Suppose π : E → N is a fibre bundle over a smooth

manifold and ϕ : M → N is a smooth map. There is a bijective cor-

respondence between sections of the pullback bundle ϕ∗E → M and

sections of E along ϕ. Thus:

Γϕ(E) ∼= Γ(ϕ∗E).

The same is true for local sections.

Proof. Let pr2 : ϕ∗E → E denote the second projection:

ϕ∗E E

M N

pr2

pr1 π

π

If s̃ ∈ Γ(ϕ∗E) then

s = pr2 ◦s̃

is a section of E along ϕ. Conversely a section s of E along ϕ uniquely

determines a section s̃ ∈ Γ(ϕ∗E) by the same equation.

As a result of Lemma 29.5, we will often simply identify elements of

Γϕ(E) and Γ(ϕ∗E), and write them both with the same letter.

Definition 29.6. Let π : E → N be a fibre bundle and let ∆ be

a preconnection on E. Suppose ϕ : M → N is a smooth map and

s ∈ Γϕ(E) is a section of E along ϕ. We say that s is horizontal

along ϕ if the corresponding section of ϕ∗E is horizontal with respect

to the pullback connection ϕ∗∆. Explicitly, this means that

The fact that (29.2) has an = and
(29.3) has an ⊆ is not a typo!

Ds(p)(TpM) ⊆ ∆s(p), ∀p ∈M. (29.3)

If we take M = N and ϕ to be the identity Remark 29.3 tells us

that Definition 29.2 and 29.6 coincide. At the opposite extreme, if we
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take M to be a point q ∈ N then a section of the pullback bundle

can be identified with an element of TqN , and all such elements are

horizontal. A more useful case arises when M has dimension 1, as we

now explain.

Example 29.7. Take M to be an interval (a, b) and ϕ = γ : (a, b)→ N

to be a smooth curve in N . We will usually use the special letter

ρ (instead of s) to denote a section along a curve. Thus a section

ρ ∈ Γγ(E) is simply a smooth curve in E such that ρ(t) ∈ Eγ(t) for all

t ∈ (a, b). Moreover ρ is horizontal along γ if

ρ̇(t) ∈ ∆ρ(t), ∀ t ∈ (a, b).

Note that if ρ ∈ Γγ(E) then π ◦ ρ = γ and hence

Dπ(ρ(t))ρ̇(t) = γ̇(t).

Remark 29.8. It will often be convenient to work with smooth curves

defined on a closed interval [a, b]. Here “smooth” can be interpreted as

either requiring that there exists a smooth extension to some interval

(a − ε, b + ε), or just by considering [a, b] as a smooth manifold with

boundary. Note however that if γ : [a, b] → N is a smooth curve then

γ∗E → [a, b] is a vector bundle over a smooth manifold with boundary.

Proposition 29.9. Let π : E → M be a fibre bundle, and let ∆ be

a preconnection on E. Let γ : [a, b] → M be a smooth curve and let

t0 ∈ [a, b]. Then for any u ∈ Eγ(t0), there exists ε > 0 and unique

horizontal section ρ of E along γ|(t0−ε,t0+ε) such that ρ(t0) = u.

Proof. We consider the pullback bundle γ∗E over [a, b]:

γ∗E E

[a, b] M

pr2

pr1 π

γ

We abbreviate by T the vector field ∂
∂t on [a, b]. Let Let T ∈ X(γ∗E)

denote the horizontal lift of with respect to the pullback connection

γ∗∆. Let δ denote the integral curve of T in γ∗E such that δ(t0) =

(t0, p), which is defined on some interval I := (t0 − ε, t0 + ε). We claim

that η := pr1 ◦δ is an integral curve of T . To see this we compute

η̇(t) = D pr1(δ(t))δ̇(t)

= D pr1(δ(t))T (δ(t))

= T (η(t)).

Since η(t0) = t0 and η is an integral curve of T , we must have η(t) = t

for all t ∈ (t0 − ε, t0 + ε). Thus δ is a section of γ∗E over I: δ ∈
Γ(I, γ∗E). Moreover it follows from the definition of δ and T that δ is

a horizontal section of γ∗E. Thus by Lemma 29.5, ρ := pr2 ◦δ is an

element of Γγ(I, E) which is horizontal and satisfies ρ(t0) = u. Finally,

uniqueness is immediate from the uniqueness of integral curves.
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For connections on vector bundles, Proposition 29.9 can be strength-

ened. On Problem Sheet L you will show:

Proposition 29.10. Let π : E → M be a vector bundle, and let ∆ The difference is that for connections,

the corresponding section ρ is defined
on all of [a, b]. This is because in this

case the vector field T is complete.

be a connection on E. Let γ : [a, b] → M be a smooth curve and let

t0 ∈ [a, b]. Then for any v ∈ Eγ(t0), there exists a unique horizontal

section ρ of E along γ such that ρ(t0) = v.

From now on we will focus solely on vector bundles and connec-

tions, rather than fibre bundles and preconnections. Here is main

definition of today’s lecture.

Definition 29.11. Let π : E → M be a vector bundle over a smooth

manifold. A parallel transport system P on E assigns to every

point v ∈ E and every curve γ : [a, b] → M with γ(a) = π(v), a

unique section 𝕡γ;v ∈ Γγ(E) with initial condition v, i.e. such that

𝕡γ;v(a) = v. One calls 𝕡γ;v the parallel lift of γ starting at v. This

association should satisfy the following five axioms:

(i) (Linear isomorphism): For every smooth curve γ : [a, b]→ M the

map

Pγ : Eγ(a) → Eγ(b), Pγ(v) := 𝕡γ;v(b)

is a linear isomorphism. Moreover

P−1
γ = Pγ−

where γ− : [a, b]→M is the reverse curve t 7→ γ(a− t+ b).

(ii) (Concatenation): If γ : [a, b]→ M is a smooth path and c ∈ (a, b).

then if we abbreviate

γ1 := γ|[a,c], γ2 := γ|[c,b], w :=𝕡γ;v(c),

then

𝕡γ;v(t) =

𝕡γ1;v(t), t ∈ [a, c],

𝕡γ2;w(t), t ∈ [c, b].

This implies that

Pγ = Pγ2 ◦ Pγ1 .

(iii) (Independence of parametrisation): If γ : [a, b] → M is a

smooth curve and h : [a1, b1] → [a, b] is a diffeomorphism such that

h(a1) = a and h(b1) = b then for every point v ∈ Eγ(a) and every

t ∈ [a1, b1], we have

𝕡γ◦h;v(t) =𝕡γ;v(h(t)).

(iv) (Smooth dependence on initial conditions): The section 𝕡γ;v The precise statement of this axiom is
given in the bonus section below.depends smoothly on both γ and v.

(v) (Initial uniqueness): Suppose γ, δ : [a, b] → M are two curves

such that γ(a) = δ(a) and γ̇(a) = δ̇(a). Then for each v ∈ Eγ(a), the

two curves 𝕡γ;v and 𝕡δ;v have the same initial tangent vector:

𝕡̇γ;v(a) = 𝕡̇δ;v(a)
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Remark 29.12. In general if γ : [a, b] → M is a smooth curve on M

and ρ ∈ Γγ(E) is any section along γ then we say ρ is parallel along

γ if ρ =𝕡γ;v for some v ∈ Eγ(a). By uniqueness, this is only possible

for v = ρ(0).

Example 29.13. Let E = M × Rn be a trivial bundle. We define the

trivial parallel transport system on E by declaring that constant

sections are parallel. Explicitly, if γ : [a, b] → M is any smooth curve

with γ(a) = p then we define

𝕡γ;v(t) := (γ(t), v), v ∈ Rn.

We will see in Lecture 32 that this is consistent with Definition 28.1.

Remark 29.14. We will explore this further in Lecture 32, but for

now note that a parallel transport system gives us a way to identify

two different fibres Ep and Eq of a vector bundle over M : simply take

a curve γ from p to q and consider the linear isomorphism Pγ : Ep →
Eq. This will allow us to make sense of (28.2) from the last lecture,

and thus let us differentiate sections along vector fields for non-trivial

vector bundles.

Next lecture we will prove that a parallel transport system P de-

termines and is uniquely determined by a connection ∆. We conclude

today’s lecture by introducing a special type of chart on a manifold , More precisely: the inverse of a chart.

which will be useful in several places during the course, including in

the aforementioned proof.

In order to reduce the number of π’s floating around we adopt the

convention that for a given vector bundle π : E → M and a subset

U ⊂M we abbreviate

E|U := π−1(U) =
⊔
p∈U

Ep.

Definition 29.15. Let M be a smooth manifold and fix p ∈ M . Let

Op ⊂ TpM be an open set which is star-shaped with respect to 0p, and

let Up ⊂ M be a neighbourhood of p. A diffeomorphism ψp : Op → Up

such that ψp(0p) = p is said to be a ray parametrisation at p.

We say that the ray parametrisation ψp is complete if Op = TpM .

Finally we say that the ray parametrisation is adapted if

Dψp(0p) ◦ J0p = idTpM , (29.4)

i.e. such that the following commutes:

TpM TpM

T0pOp

id

J0p Dψp(0p)

A ray parametrisation is not really any new; it is simply a new

name. Indeed, if x : U → O ⊂ Rm is a chart centred at p such that



6

O is star-shaped with respect to 0 then after choosing an isomorphism We have used such charts throughout

the course, starting with Lemma 3.7.TpM ∼= Rm the map ψp := x−1 is a ray parametrisation. Note also

that since any such star-shaped set O ⊂ Rm is diffeomorphic to all

of Rm via a map fixing the origin, we can without loss of generality

always assume that our ray parametrisations are complete.

The adapted condition (29.4) should remind you of Theorem 12.3.

This is no coincidence – see Remark 29.17 below. Let us now explain

why (adapted) ray parametrisations are useful. Suppose ψp : Op → Up

is a ray parametrisation at p, and fix ξ ∈ TpM . Then since Op is star-

shaped, there exists ε > 0 such that tξ ∈ Op for all |t| ≤ ε. This means

that the curve

γp,ξ : (−ε, ε)→ Up, γp,ξ(t) := ψp(tξ) (29.5)

is a well-defined smooth curve with γp,ξ(0) = p. This curve is the

image of the ray segment {tξ | |t| < ε} in M (hence the name “ray

parametrisation”). If ψp is complete then each γp,ξ is defined for all

t ∈ R. If ψp is adapted then these curves also satisfy γ̇p,ξ(0) = ξ, since

γ̇p,ξ(0) =
d

dt

∣∣∣
t=0

ψp(tξ)

= Dψp(0p) ◦ J0p(ξ)

= ξ.

This in itself is nothing new: the existence of some curve γ : (−ε, ε) →
M such that γ(0) = p and γ̇(0) = ξ was proved all the way back

in Lecture 4. The point of an adapted ray parametrisation is that it Moreover the interval of definition of

γp,ξ also depends smoothly on ξ.allows us to choose a family γp,ξ of curves such that (ξ, t) 7→ γp,ξ(t) is

also smooth in ξ.

As a result, it is not immediately obvious that adapted ray parametri-

sations exist. We will prove this shortly, but first let us complicate the

definition a bit by allowing p to vary.

Definition 29.16. Let O ⊂ TM be an open set. Set V = π(O)

and assume that Op := O ∩ TpM is star-shaped with respect to Op
for all p ∈ V . Let U be an open set in M with V ⊂ U . A moving

parametrisation is a smooth map ψ : O → U such that ψ(p, 0p) = p

for all p ∈ V . Thus ψp := ψ|TpM is a ray parametrisation at p for each

p ∈ V . As before, we say a moving parametrisation is complete if

O = TM |V , and we say that ψ is adapted if

Dψp(0p) ◦ J0p = idTpM , ∀ p ∈ V. (29.6)

As in (29.5), we can associate to a moving parametrisation a whole

smooth family of curves γp,ξ for p ∈ V and ξ ∈ TpM via the formula

γp,ξ(t) := ψ(p, tξ),

which is well-defined for t small enough (depending on both p and ξ).

This family of curves has the property that γp,ξ(0) = p for all p ∈ V
and ξ ∈ TpM . In the adapted case one also has γ̇p,ξ(0) = ξ.
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Remark 29.17. As remarked above, the adapted condition (29.6) for

a moving parametrisation is very similar to the corresponding property

of the exponential map of a Lie group (Theorem 12.3). In Lecture 44

we will see that a choice of spray S on M determines an adapted (but

typically not complete) moving parametrisation exp: O → M over the

entire manifold M . As the notation suggests, this map is called the

exponential map of the spray S.

Since it will be several lectures before we construct the exponential

map associated to a Riemannian metric, let us give a direct proof that

complete adapted moving parametrisations exist.

Lemma 29.18. Let M be a smooth manifold and let p ∈ M . Then

there exists a neighbourhood U of p and an adapted moving parametri-

sation ψ : TM |U →M .

Proof. Let x : U → Rm be a chart on M such that x(p) = 0. We now

define ψ : TM |U →M by

ψq(ξ) := x−1
(
x(q) + J−1

x(q)

(
Dx(q)ξ

))
.

Since Dx(q) is linear we have ψ(q, 0q) = x−1(x(q) + 0) = q. Moreover

for ξ ∈ TqM we compute

Dψq(0q) ◦ J0q (ξ) =
d

dt

∣∣∣
t=0

x−1(x(q) + J−1
x(q)(Dx(q)(0q + tξ)

)
=

d

dt

∣∣∣
t=0

x−1(x(q) + tJ−1
x(q)(Dx(q)(ξ)

)
= Dx−1(x(q)) ◦ Jx(q) ◦ J−1

x(q) ◦Dx(q)ξ

= Dx−1(x(q)) ◦Dx(q)ξ

= ξ.

This completes the proof.

Bonus Material for Lecture 29

In the bonus section we give a precise formulation of Axiom (iv) of

Definition 29.11.

It follows from Axiom (i) that v 7→ 𝕡γ;v is also linear (where now

addition and scalar multiplication take place in the vector space of

sections Γγ(E)). Thus in particular v 7→ 𝕡γ;v is smooth. Therefore the

only content of Axiom (iv) is the smooth dependence on γ. But what

exactly does this mean? Since the space of all curves γ on M is itself

infinite-dimensional, this is a little tricky to express precisely. Here we

present one possible way, using moving parametrisations.

Let us temporarily write by π⊕ : E ⊕ TM → M for the footpoint

map from the direct sum bundle E ⊕ TM . Thus π−1
⊕ (p) = Ep ⊕ TpM .



8

(iv)’ (Smooth dependence on initial conditions): For every open One could alternatively demand that

this held for every adapted moving

parametrisation.
set U ⊂ M and every moving parametrisation ψ : TM |U → M , the

map

π−1
⊕ (U)→ E, (p, ξ, v) 7→𝕡γp,ξ;v(1),

is smooth, where γp,ξ is defined as in (29.6).



Will J. Merry

LECTURE 30

The Equivalence of Connections and
Parallel Transport

The goal of this lecture is to prove that a parallel transport system P
determines and is uniquely determined by a connection ∆. This result

is quite involved, and we prove each direction separately.

Theorem 30.1. Let π : E → M be a vector bundle, and let P be a

parallel transport system on E. Then P determines a connection ∆ on

E. This connection has the property that a section ρ along a curve γ

is parallel in the sense of Remark 29.12 if and only if ρ is horizontal

with respect to ∆ in the sense of Definition 29.2.

Proof. Throughout we assume that M has dimension m, and that E

is a vector bundle of rank n. Given v ∈ E, define ∆v ⊂ TvE to be

the set of all tangent vectors ζ such that there exists a smooth curve The fact that we choose a fixed

interval [0, 1] is just for convenience;
by Axiom (iii) of Definition 29.11 any

interval will work.

γ : [0, 1]→M with

ζ = 𝕡̇γ;v(0).

Then set

∆ :=
⊔
p∈E

∆p ⊂ TE.

We will prove that ∆ is a connection in five steps. In the sixth and

final step we prove the last sentence of the theorem.

1. Fix a point p ∈ M , and let ψ : TM |U → M denote an adapted

moving parametrisation about p. As in the paragraph after the state-

ment of Lemma 29.18, for (q, ξ) ∈ TM |U set

γq,ξ(t) := ψ(q, tξ),

so that γq,ξ : R → M is a smooth curve with γq,ξ(0) = q and γ̇q,ξ(0) =

ξ, which moreover depends smoothly on (q, ξ). Next, we increase the

numbers of subscripts from two to three by taking into account an

element v ∈ Eq: set

ρq,ξ,v(t) := 𝕡γq,ξ;v(t),

so that ρq,ξ,v : R→ E is a smooth curve such that

ρq,ξ,v(0) = v, ρq,ξ,v(t) ∈ Eγq,ξ(t).

Finally we define

ϕ : (TM ⊕ E)|U × R→ E, (q, ξ, v, t) 7→ ρq,ξ,v(t).

By Axiom (iv)’ of Definition 29.11, ϕ is a smooth map. By Axiom

(iii), ρq,ξ,v(t) = ρq,tξ,v(1), and thus

ρ̇q,ξ,v(0) =
d

dt

∣∣∣
t=0

ρq,tξ,v(1)

= Dϕ(0q, v, 1)
(
J0p(ξ), 0, 0

)
.
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Thus the map TpM → TvE that sends ξ to ρ̇q,ξ,v(0) is linear, as it is

the composition of linear maps. If we call this map `q,v : ξ 7→ ρ̇q,ξ,v(0)

then ∆v is equal (by definition) to im `q,v. Thus ∆v is a vector space,

as claimed.

2. In this step we show that Dπ(v)|∆v is a linear isomorphism. We

already know that ∆v is a vector space of dimension at most m by the

previous step. With `q,v as before, we have

Dπ(v) ◦ `q,v(ξ) = Dπ(v)ρ̇q,ξ,v(0)

=
d

dt

∣∣∣
t=0

π(ρq,ξ,v(t))

=
d

dt

∣∣∣
t=0

γq,ξ(t)

=
d

dt

∣∣∣
t=0

ψ(q, tξ)

= ξ,

where the last equality used (29.6). Thus ` is a linear isomorphism,

with inverse Dπ(v)|∆(v).

3. In this step, we prove that ∆ is a distribution on E. For this, This argument is due to Joscha

Gillessen.consider the pullback bundle π∗TM → E. Using (28.5) as inspiration,

we will show that locally ∆ can be written as the image of an injective

vector bundle morphism Φ from the pullback bundle π∗TM to TE.

Part (i) of Problem H.8 then implies that ∆ is a vector subbundle of

TE, and hence a distribution.

For this note that as smooth manifolds, one has These are the same manifold, but not

the same bundle!

(π∗TM)|π−1(U)
∼= (TM ⊕ E)|U .

Thus we may alternatively regard ϕ as a map

ϕ : (π∗TM)|π−1(U) × R→ E.

This implies that the fibrewise map

Φ: (π∗TM)|π−1(U) → TE|π−1(U), Φq,v(ξ) := ρ̇q,ξ,v(0)

is smooth. Moreover the argument above shows that Φq,v is homoge-

neous:

Φq,v(tξ) = tΦq,v(ξ).

Problem M.1 then implies that Φq,v is linear. Thus Φ is a vector bun-

dle homomorphism, which moreover is injective by argument from

Step 2.

4. Now that we know that ∆ is a distribution, the fact that ∆ is a

preconnection follows directly from Step 2. In this step we prove that

∆ is actually a connection.

Fix p ∈M and v ∈ Ep. We need to show that for any c ∈ R,

Dµc(v)(∆v) = ∆cv

where µc is scalar multiplication in the fibres, as in Definition 28.4.

Let γ : [0, 1] → M denote a smooth curve with γ(0) = p, and let ρ :=
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𝕡γ;v. By linearity of parallel transport (this is Axiom (i) of Definition

29.11), µc ◦ ρ is also parallel along γ. Since

Dµc(v)ρ̇(0) =
d

dt

∣∣∣
t=0

(µc ◦ ρ)(t)

we see that Dµc(v)(∆v) ⊂ ∆cv. Then since

Dπ(cv) ◦Dµc(v)ρ̇(0) = Dπ(v)ρ̇(0)

and Dπ(cv) maps ∆cv isomorphically onto TpM , it follows that

Dµc(v)(∆v) = ∆cv. This completes the proof that ∆ is a connection.

5. Finally we prove that a section ρ along a curve γ is parallel in

the sense of Remark 29.12 if and only if ρ is horizontal with respect to

∆ in the sense of Definition 29.2. One direction is clear by definition

of ∆, so it suffices to show that if γ is a smooth curve and ρ ∈ Γγ(E)

is horizontal along γ then ρ is also parallel. Let v = ρ(0) and let

ρ1(t) := 𝕡γ;v. Since both ρ and ρ1 are horizontal and

Dπ(ρ1(t))ρ̇1(t) = γ̇(t) = Dπ(ρ(t))ρ̇(t),

we have by the defining condition of a preconnection that ρ̇(t) = ρ̇1(t).

Thus ρ and ρ1 are two curves with the same initial condition and the

same derivative, whence they are equal. This at last completes the

proof of Theorem 30.1.

We now prove the opposite direction: how to go from a connection

to a parallel transport system.

Theorem 30.2. Let π : E → M be a vector bundle, and let ∆ be

a connection on E. The system of all horizontal lifts to E of smooth

curves in M defines a parallel transport system P in E. Moreover the

connection on E determined by P from Theorem 30.1 is just ∆ again.

Proof. As the statement of the theorem indicated, given a smooth

curve γ : [a, b] → M and v ∈ Eγ(a), we define 𝕡γ;v ∈ Γγ(E) to be the

horizontal lift of γ with respect to ∆, whose existence and uniqueness

is guaranteed by Proposition 29.9. We must check that the five axioms

of a parallel transport system are satisfied. We will do this in three

steps.

1. In this step we check that our proposed parallel transport sys-

tem satisfies Axiom (i) from Definition 29.11. Let γ : [a, b] → M be

a smooth curve. Set p = γ(a) and q = γ(b). If ρ is a horizontal lift

of γ to E then for any c ∈ R the curve t 7→ µc(ρ(t)) = cρ(t) is also

horizontal since

d

dt
(µc(ρ))(t) = Dµc(cρ(t))ρ̇(t) ∈ ∆µc(ρ(t))

by (28.3). This shows that the map Pγ : Ep → Eq is homogeneous.

Moreover it follows from the proof of Proposition 29.9 and the smooth

dependence on initial conditions of integral curves that Pγ is differ- That is, Theorem 9.1 applied to

the vector field T from the proof of
Proposition 29.9.

entiable as a map from the vector space Ep to the vector space Eq.

Problem M.1 then implies once more that Pγ is actually linear.
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If γ−(t) := γ(a + b − t) is the reverse curve from q to p then

ρ−(t) := ρ(b− t) is a horizontal section along γ− with initial condition

ρ(b)). It follows that Pγ is invertible, with inverse Pγ− . This proves

that Axiom (i) from Definition 29.11 holds.

2. Axiom (ii) follows from the group property of the flow of a

complete vector field (cf. Definition 9.14 and the marginal note next

to Proposition 29.10.)

3. Let us now verify Axiom (iii) from Definition 29.11. Let γ : [a, b]→
M be a smooth curve and h : [a1, b1] → [a, b] is a diffeomorphism such

that h(a1) = a and h(b1) = b. Set δ := γ ◦ h. Fix v ∈ Eγ(a). Let ρ be

the horizontal section of E along γ with ρ(a) = v and let σ be the hor-

izontal section along δ such that σ(a1) = v. We claim that σ = ρ ◦ h.

Indeed, ρ ◦ h is certainly a lift of δ (as π ◦ ρ ◦ h = γ ◦ h = δ) and

d

dt
ρ(h(t)) = h′(t)ρ̇(h(t)) ∈ ∆ρ(h(t))

by the chain rule. Thus by the uniqueness part of Proposition 29.9, we

have σ = ρ ◦ h as desired.

4. We now address the final two axioms, Axiom (iv) and Axiom

(v). We will not say much about Axiom (iv) (given that we rele-

gated the precise statement of this Axiom to the bonus section), other

than that it essentially boils once again down to the fact that integral

curves depend smoothly on initial conditions. Axiom (v) on the other

hand is immediate, since if γ is a smooth curve in M , v ∈ Eγ(0) and ρ

is the horizontal section of E along γ with initial condition v then ρ̇(0)

is the unique element of ∆v which is mapped to γ̇(0) by Dπ(v).

Thus P is indeed a parallel transport system. To complete the

proof we must show that the connection obtained from P by applying

Theorem 30.1 is simply ∆ again. This however is immediate from

Axiom (v) of Definition 29.11.

Remark 30.3. From now on we will usually work with connections,

rather than parallel transport systems. Thus if a connection is spec-

ified and we refer to a section being “parallel”, it should always be

implicitly assumed that the parallel transport system in question is

the one associated via Theorem 30.2 to the given connection.

This convention has the somewhat amusing consequence that the

words “parallel” and “horizontal” can now often be used interchange-

ably. In general we will (usually) favour the word “parallel” when

talking about sections, and “horizontal” when talking about vectors.



Will J. Merry

LECTURE 31

Covariant Derivatives

In this lecture we introduce the connection map of a connection, and

use this to define covariant derivative operators.

We begin with some remarks about the vertical bundle of a vector

bundle. The vertical bundle is defined for any fibre bundle, but for

a vector bundle the vertical bundle has extra structure, as we now

explain. Let π : E → M be a vector bundle. We form the pullback

bundle π∗E → E:

π∗E E

E M

pr2

pr1 π

π

This is the bundle whose fibre over v ∈ E is Eπ(v). By part (ii) of

Problem I.5 (or more accurately, its solution), the dash-to-dot maps

assemble together to define a vector bundle isomorphism from π∗E to

V E:

J : π∗E → V E, (u, v) 7→ Ju(v) =
d

dt

∣∣∣
t=0

u+ tv

π∗E V E

E E

J

pr1 πV E

id

If we denote by If we suppress the dash-to-dot map

from our notation, the map p̃r2 is

simply the identity map v 7→ v. This
abuse of notation is very common in

introductory Differential Geometry

texts.

p̃r2 := pr2 ◦J−1, Ju(v) 7→ v

then p̃r2 is a vector bundle isomorphism along π and the following

commutes

V E E

E M

p̃r2

πV E π

π

Definition 31.1. Let π : E → M be a vector bundle and let ∆ be a

connection on E. Define a map

K : TE → E, K(ζ) := p̃r2(ζv).

This makes sense, since ζv ∈ V E. We call K the connection map of

the connection ∆.

Remark 31.2. We can use the connection map K and the parallel

transport system P associated to ∆ to give a new way to express the
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horizontal-vertical splitting of a tangent vector. Indeed, if v ∈ E and

ζ ∈ TvE and γ : [0, 1] → M is any smooth curve with γ(0) = π(v) and

Dπ(v)ζ = γ̇(0), then it follows from Theorem 30.1 and Definition 31.1

that

ζh = 𝕡̇γ;v(0) and ζv = Jv(K(ζ)). (31.1)

It is immediate that K is a vector bundle morphism along π, i.e.

that K is linear on the fibres of TE and that the following commutes:

TE E

E M

K

πTE π

π

In fact, if we combine K with Dπ we can build a vector bundle iso-

morphism along π:

Lemma 31.3. Let π : E → M be a vector bundle and let ∆ be a

connection on E with connection map K. Then (Dπ,K) is a vector

bundle isomorphism along π:

TE TM ⊕ E

E M

(Dπ,K)

πTE (πTM ,π)

π

Proof. Since TE and TM ⊕ E have the same fibre dimension, it

suffices to check that ker(Dπ,K) = 0. This is immediate from Lemma

28.3.

Lemma 31.4. Let π : E → M be a vector bundle of rank n. Then This result was part (iii) of Problem

I.5. However we include the proof

here again in order to fix the notation.
Dπ : TE → TM is a vector bundle of rank 2n.

Proof. Roughly speaking, the vector bundle structure on TE → TM

is obtained by differentiating the vector addition and scalar multiplica-

tion on E →M . Here are the details.

The fibre of the bundle Dπ : TE → TM over a point ξ ∈ TpM

is the set of all vectors ζ ∈ TvE, as v ranges over Ep, such that

Dπ(v)ζ = ξ. We endow each fibre with a vector space structure as

follows: let A : E ⊕ E → E denote the vector bundle homomorphism

A : E ⊕ E → E, A(u, v) = u+ v (31.2)

given by fibrewise addition. Then if ζ ∈ TuE and η ∈ TvE belong to

the same fibre we define We use the special notation and •

in an attempt to minimise confusion

later on.ζ η := DA(u, v)(ζ, η), (31.3)

which belongs to the fibre Tu+vE. Similarly if c ∈ R then we define

c • (v, ζ) := Dµc(v)ζ, (31.4)

where µc is the fibrewise scalar multiplication as in Definition 28.4.

With these definitions, if ε : π−1(U) → Rn is a vector bundle chart
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on E then the bundle Dε : T (π−1(U)) → TRn = R2n is a linear

isomorphism on each fibre, and hence may serve as a vector bundle Exercise: Check this!

chart. The result now follows from Proposition 16.15.

Far less obviously, K is also a vector bundle morphism from TE to

E along π : TM →M .

Theorem 31.5. Let π : E → M be a vector bundle and let ∆ be a

connection on E with connection map K : TE → E. Then

K(ζ η) = K(ζ) +K(η), K(c • ζ) = cK(ζ), (31.5)

and hence K is a vector bundle morphism along πTM :

TE E

TM M

K

Dπ π

πTM

An alternative way of expressing (31.5) is via commutativity of the

following two diagrams:

TE ⊕ TE TE

E ⊕ E E

DA

(K,K) K

A

TE TE

E E

Dµc

K K

µc

(31.6)

This innocuous looking result is actually the lynchpin needed to

define covariant derivatives, as we will see in the proof of Theorem

31.8 below.

Proof. Fix p ∈ M , u ∈ Ep and ζ ∈ TuE. Let γ : [0, 1] → M be a

smooth curve with γ(0) = p and γ̇(0) = Dπ(u)ζ. By Remark 31.2 we

can write

ζh = 𝕡̇γ;u(t) and ζv = Ju(K(ζ)).

Now fix w ∈ Ep and let

fu,w : [0, 1]× (−1, 1)→M, fu,w(s, t) := 𝕡γ;u+tw(s).

By the chain rule,

Dfu,w(0, 0)

(
∂

∂s

∣∣∣
0
,
∂

∂t

∣∣∣
0

)
= D1fu,w(0, 0)

∂

∂s

∣∣∣
0

+D2fu,w(0, 0)
∂

∂t

∣∣∣
0

= 𝕡̇γ;u(0) +
d

dt

∣∣∣
t=0

𝕡γ;u+tw(0)

= ζh +
d

dt

∣∣∣
t=0

u+ tw

= ζh + Ju(w).

Applying this with w = K(ζ) yields the formula

ζ = Dfu,K(ζ)(0, 0)

(
∂

∂s

∣∣∣
0
,
∂

∂t

∣∣∣
0

)
.
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Why is this helpful? Suppose v is another element of Ep, and η ∈ TvE
satisfies Dπ(v)η = Dπ(u)ζ so the addition ζ η makes sense. Then the

same argument tells us

η = Dfv,K(η)(0, 0)

(
∂

∂s

∣∣∣
0
,
∂

∂t

∣∣∣
0

)
.

We can use these expressions to compute

ζ η := DA(u, v)(ζ, η)

=
d

dt

∣∣∣
t=0

(
fu,K(ζ)(t, t) + fv,K(η)(t, t)

)
=

d

dt

∣∣∣
t=0

fu+v,K(ζ)+K(ζ)(t, t)

= (ζ + η)h + Ju+v

(
K(ζ) +K(η)

)
.

But Remark 31.2 also tells us that the vertical component of ζ η is

Ju+v

(
K(ζ η)

)
. Comparing this to the expression above and using the

fact that Ju+v is an isomorphism, we see that

K(ζ ξ) = K(ζ) +K(ξ).

The proof that K(c • ζ) = cK(ζ) goes along similar lines, and is left as

an exercise.

We now use the connection map to give a third interpretation

of connections, via covariant derivatives. This point of view is the

“usual” one, and many introductory accounts of connections only

define them this way.

Definition 31.6. Let π : E → N be a vector bundle and let ϕ : M →
N be a smooth map. An operator

∇ϕ : X(M)× Γϕ(E)→ Γϕ(E),

written

(X, s) 7→ ∇ϕXs

is called a covariant derivative operator in E along ϕ if the

following four conditions are satisfied for any X,Y ∈ X(M), s, r ∈
Γϕ(E), and f ∈ C∞(M):

(i) ∇ϕX+Y s = ∇ϕXs+∇ϕY s,

(ii) ∇ϕfXs = f∇ϕXs,

(iii) ∇ϕX(s+ r) = ∇ϕXs+∇ϕXr,

(iv) ∇ϕX(fs) = X(f)s+ f∇ϕXs.

We call ∇ϕXs the covariant derivative of s with respect to X.

If M = N and ϕ = id then we write ∇ instead of ∇id and call ∇ a

covariant derivative operator on E.

By property (ii) the operator

X(M)→ Γϕ(E), X 7→ ∇ϕXs
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is C∞(M)-linear, and hence by Theorem 20.20 it is also a point opera-

tor. We can therefore Note that the left-hand side of (31.7)

does not have reference to the point
p, since this is implicitly contained in

the fact that ξ ∈ TpM .

∇ϕξ s := (∇ϕXs)(p), (31.7)

where X is any vector field on M such that X(p) = ξ.

Note however that property (iv) implies that s 7→ ∇ϕXs is not

C∞(M)-linear, and thus s 7→ ∇ϕXs is not a point operator. Therefore

value of ∇ϕXs at p depends on s not just through s(p). In fact, as we

will later prove, (∇ϕXs)(p) depends on s only through the values of

s(γ(t)) for t small, where γ is any smooth curve such that γ(0) = p.

Remark 31.7. Take E = TM and ϕ = id. Then both Y 7→ ∇XY and

Y 7→ LXY are operators X(M) → X(M). The Lie derivative is not a

point operator (cf. Remark 22.23), whereas ∇X is. In this sense ∇X is

more “useful” than LX – the disadvantage is that ∇X depends on the

choice of ∇, whereas the Lie derivative is canonical.

Here then is the main result that links connections and covariant

derivative operators. Just as with connections and parallel transport

operators, the proof is quite involved, and we split it into two stages:

one direction is Theorem 31.8 below, and the other is Theorem 32.1 in

the next lecture.

Theorem 31.8. Let π : E → N be a vector bundle and let ∆ be a

connection on E with connection map K. If ϕ : M → N is any smooth

map then

(∇ϕXs)(p) := K
(
Ds(p)X(p)

)
(31.8)

defines a covariant derivative operator in E along ϕ. This covariant

derivative operator has the property that a section s ∈ Γϕ(E) is

parallel if and only if ∇ϕXs = 0 for all X ∈ X(M). Moreover the chain

rule holds: if ψ : L → M is a smooth map then for all q ∈ L and

ξ ∈ TqL,

∇ϕ◦ψξ (s ◦ ψ) = ∇ϕDψ(q)ξs. (31.9)

Remark 31.9. If ψ : L → M is actually a diffeomorphism then (31.9)

can be written as

∇ϕ◦ψY (s ◦ ψ) = (∇ϕψ∗Y s) ◦ ψ, Y ∈ X(L), s ∈ Γϕ(E). (31.10)

This only makes sense for ψ a diffeomorphism, as otherwise ψ∗Y is not

defined!

Proof. The formula (31.8) certainly defines an element of Γϕ(E). We

show that ∇ϕ really is a covariant derivative operator along ϕ in four

steps.

1. In this step we show that a section s ∈ Γϕ(E) is parallel with

respect to ∆ if and only if ∇ϕXs = 0 for every vector field X ∈ X(M).

This is clear, since ∆ = kerK and by Definition 29.2 a section s is

parallel (or horizontal – cf. Remark 30.3) if and only if Ds(TM) ⊂ ∆.

2. Let us now verify (31.9). Note s ◦ ψ ∈ Γϕ◦ψ(E). Fix q ∈ L and
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ξ ∈ TqL. Then

∇ϕ◦ψξ (s ◦ ψ) = K
(
D(s ◦ ψ)(q)ξ

)
= K

(
Ds(ψ(q)) ◦Dψ(q)ξ

)
= ∇ϕDψ(q)ξs.

3. Let s, r ∈ Γϕ(E) and f ∈ C∞(M). Fix p ∈ M , ξ ∈ TpM . In this

step we show that

∇ϕξ (s+ r)(p) = (∇ϕξ s)(p) + (∇ϕξ r)(p). (31.11)

Let γ be a curve in M with γ(0) = p and γ̇(0) = ξ. Then with A as in

(31.2) we have from (31.3) that

Ds(p)ξ Dr(p)ξ = DA(s(p), r(p))
(
Ds(p)ξ,Dr(p)ξ

)
=

d

dt

∣∣∣
t=0

s(γ(t)) + r(γ(t))

=
d

dt

∣∣∣
t=0

(s+ r)(γ(t))

= D(s+ r)(p)ξ.

Since K is a vector bundle morphism along πTM by Theorem 31.5, we

obtain

∇ϕξ (s+ r) = K
(
D(s+ r)(p)ξ

)
= K

(
Ds(p)ξ Dr(p)ξ

)
= K(Ds(p)ξ) +K(Dr(p)ξ)

= ∇ϕξ s+∇ϕξ r.

This proves (31.11).

4. Let s ∈ Γϕ(E) and f ∈ C∞(M). Fix p ∈ M and ξ ∈ TpM . In

this step we prove that

∇ϕξ (fs) = ξ(f)s+ f(p)∇ϕξ s. (31.12)

Let µ : R × E → E be the scalar multiplication (c, v) 7→ µc(v) = cv.

Then for c 6= 0, b ∈ R and ζ ∈ TvE,

Dµ(c, v)

(
b
∂

∂t

∣∣∣
c
, ζ

)
= Dµc(v)ζ + Jcv(bv). (31.13)

The section p 7→ f(p)s(p) can be written as the composition µ ◦ (f, s),

and hence using (31.13) with ζ = Ds(p)ξ we compute

D(fs)(p)ξ = D
(
µ ◦ (f, s)

)
(p)ξ

= Dµ(f(p), s(p)) ◦
(
Df(p)ξ,Ds(p)ξ

)
= Dµf(p)(s(p))Ds(p)ξ + Jf(p)s(p)((Df(p)ξ)s(p))

= Dµf(p)(s(p))Ds(p)ξ + Jf(p)s(p)(ξ(f)s(p)).

Now by definition

Dµf(p)(s(p))Ds(p) = f(p) •Ds(p).
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Thus applying K to both sides and using Theorem 31.5 we obtain

K
(
D(fs)(p)ξ

)
= f(p)K(Ds(p)ξ) + ξ(f)s(p),

which gives (31.12). This completes the proof.

Corollary 31.10. Let π : E → N be a vector bundle with connection

∆, and let ϕ : M → N be smooth. If s, r ∈ Γϕ(E) are horizontal then

so is cs + r for any c ∈ R. Thus the horizontal sections form a vector

subspace of Γϕ(E).

Proof. For any vector field X on M ,

∇ϕX(c s+ r) = c∇ϕXs+∇ϕXr = 0.



Will J. Merry

LECTURE 32

Holonomy

We begin this lecture by completing the various chain of equivalences

and proving that a covariant derivative operator uniquely determines a

connection. We then introduce the notion of holonomy, which will give

us a way to measure how “non-trivial” a connection is.

Theorem 32.1. Let ∇ be a covariant derivative operator on a vector

bundle π : E → M . Then there exists a connection ∆ on E such that

if s ∈ Γ(E) and ξ ∈ TpM then Ds(p)ξ ∈ ∆s(p) if and only if ∇ξs = 0.

Proof. Given v ∈ Ep, we define ∆v to be the set of all vectors in TvE

of the form

Ds(p)ξ − Jv(∇ξs),

for s a section of E such that s(p) = v. We then set ∆ =
⊔
v∈E ∆v. In

contrast to the proof of Theorem 30.1, this time it is clear that ∆v is a

linear subspace of TvE. Moreover Dπ(v)|∆v : ∆v → Tπ(v)M is a linear

isomorphism by construction, since

Dπ(s(p))
(
Ds(p)ξ − Jv(∇ξs)

)
= D(π ◦ s︸︷︷︸

=id

)(p)ξ −Dπ(s(p))(Jv(∇ξs)︸ ︷︷ ︸
∈V E

)

= ξ − 0

= ξ.

The proof that ∆ really is a vector subbundle goes along exactly the

same lines as the proof of Step 3 of Theorem 30.1: If x is a chart on

M with local coordinates then dx ◦ Dπ is a vector bundle chart on

∆ that can be extended to a vector bundle chart on TE. Thus ∆ is a

preconnection. Finally if c ∈ R then

D(cs)(p)ξ − Jcv(∇ξ(cs)) = Dµc(p)
(
Ds(p)ξ − Jv(∇ξs)

)
,

and hence ∆ is a connection.

As a corollary, we deduce that a covariant derivative operator ∇ϕ is

uniquely determined by what it does to ϕ = id.

Corollary 32.2. Suppose ∇ = ∇id is a covariant derivative operator

in π : E → N . Then ∇ induces a covariant derivative operator ∇ϕ for

any smooth map ϕ : M → N .

Proof. Theorem 31.8 tells us that if we start with a connection ∆, the

associated covariant derivative operator satisfies the chain rule (31.10).

Thus for p ∈M and ξ ∈ TpM one has

∇ϕξ (s ◦ ϕ) := ∇Dϕ(p)ξs.

Similarly sections of the form s̃ ◦ ϕ locally generate Γϕ(E) over

C∞(M), this shows ∇ϕ is uniquely determined by ∇. Moreover Theo-

rem 32.1 tells us that all such covariant derivative operators ∇ = ∇id

come from connections.
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Remark 32.3. Here is another way to view Corollary 32.2. Suppose

∇ = ∇id is a covariant derivative operator in π : E → N . Let ∆

denote the connection on E → N corresponding to ∇ given to us by

Theorem 32.1. Then ∆ induces a connection ϕ∗∆ on ϕ∗E → M by

Proposition 29.1, and hence also a covariant derivative operator on

X(M) × Γ(ϕ∗E) → Γ(ϕ∗E) by Theorem 31.8. The desired covariant

derivative operator ∇ϕ is then obtained using Lemma 29.5.

Next, we finally make rigorous the discussion from the beginning of

Lecture 28 when we initially motivated the definition of a connection.

This requires a couple of preliminary results, starting with following

result, whose proof is on Problem Sheet M.

Proposition 32.4. Let π : E → M be a vector bundle of rank n with

connection ∆. Fix p ∈ M , and let ψp : Up → Op be a ray parametrisa-

tion at p. For ξ ∈ TpM write γp,ξ(t) := ψp(tξ), as in (29.5). Fix a basis

{v1, . . . , vn} of Ep. There exists a local frame {e1, . . . , en} on Up such

that ei(p) = vi and such that for all ξ ∈ TpM , ei ◦ γp,ξ is parallel along

γp,ξ.

The next result is an easy corollary of Proposition 32.4, and whose

proof is also on Problem Sheet M.

Corollary 32.5. Let π : E → M be a vector bundle of rank n with

connection ∆. Fix p ∈ M and let {v1, . . . , vn} be a basis of Ep. Let

γ : (−ε, ε) → M be a smooth curve with γ(a) = p and γ̇(t) 6= 0 for all Up to shrinking ε, this can always be

achieved provided γ̇(0) 6= 0.t ∈ (−ε, ε). Then there exists a local frame {e1, . . . , en} of E over an

open set U containing p such that ei(p) = vi and such that ei ◦ γ is

parallel along γ for each i = 1, . . . , n.

We call {e1, . . . , en} a parallel local frame along γ. If ρ ∈ Γγ(E)

is any section along γ then we can write

ρ(t) = f i(t) ei(γ(t))

for some smooth functions f i(t). We claim:

Lemma 32.6. Let π : E → M be a vector bundle of rank n with con-

nection ∆. Let γ be a curve in M with γ(0) = p, and let {e1, . . . , en}
be a parallel local frame along γ. Fix ρ ∈ Γγ(E) and write ρ(t) =

f i(t) ei(γ(t)) as above. Then ρ is parallel along γ if and only if each f i

is a constant function.

Proof. Set v = ρ(0). Then ρ is parallel if and only if ρ = 𝕡γ;v. If

vi := ei(γ(0)) then we can write c = ai vi for constants ai, and then by

Axiom (i) of parallel transport,

𝕡γ;v(t) = ai𝕡γ;vi
(t) = aiei(γ(t)).

Thus ρ =𝕡γ;v if and only if f i(t) ≡ ai.

Proposition 32.7. Let π : E → N be a vector bundle with connection

∇. Let ϕ : M → N be a smooth map. Let γ : [0, 1] → M be a smooth

curve and abbreviate by

Pt : Eϕ(γ(0)) → Eϕ(γ(t))
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the parallel transport along the curve r 7→ ϕ(γ(r)) for 0 ≤ r ≤ t. Then

if s ∈ Γϕ(E) one has

∇ϕγ̇(0)s = J−1
s(γ(0))

(
d

dt

∣∣∣
t=0

P−1
t (s(γ(t)))

)
(32.1)

Proof. Let {ei} be a parallel local frame along ϕ ◦ γ. We can write

s ◦ γ = f i(ei ◦ ϕ ◦ γ) for smooth functions f i. Then

P−1
t (s(γ(t)) = P−1

t

(
f i(t)ei(ϕ(γ(t)))

)
= f i(t)ei(ϕ(γ(0))). (32.2)

Let T denote the vector field ∂
∂t on [0, 1]. Then we have by the chain

rule (31.10) that

∇ϕγ̇(0)s = ∇γT (0)(s ◦ γ)

= ∇γT (0)

(
f i(ei ◦ ϕ ◦ γ)

)
= (f i)′(0)ei(ϕ(γ(0)))

= J−1
s(γ(0))

(
d

dt

∣∣∣
t=0

P−1
t (s(γ(t)))

)
where the penultimate line used property (iv) of a connection and the

final line used (32.2).

Remark 32.8. The equation (32.1) shows how parallel transport

allows us to make sense of (28.2). Indeed, if P is the trivial parallel

transport system from Example 29.13 then this defines exactly what

we called “the trivial connection” in Definition 28.1.

Remark 32.9. The proof of Proposition 32.7 used that we already

knew that the parallel transport system P determined a covariant

derivative operator ∇ – we merely had to identify it. However a minor

modification of the argument would allow us to define ∇ via (32.1).

This would allow us to go directly from a parallel transport system to

a covariant derivative operator and bypass connections entirely. Many

introductory treatments of Differential Geometry do this. We will see

one concrete advantage of why having the connection definition on

hand is useful next lecture (Theorem 33.9).
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Summary

Here is how to go back and forth between the definitions:

(i) If you have a connection ∆ and you want. . .

(a) a parallel transport system, then for γ : [a, b]→M and

a vector v ∈ Eγ(0, set 𝕡γ;v to be the unique horizontal

section ρ ∈ Γγ(E) with ρ(0) = v.

(b) a covariant derivative operator, then set ∇Xs := K(Ds(X)),

where K is the connection map of ∆.

(ii) If you have a parallel transport system P and you

want. . .

(a) a connection, then set ∆v ⊂ TvE to be the set of all tangent

vectors 𝕡̇γ;v(0) of parallel lifts of curves γ starting at π(v).

(b) a covariant derivative operator, then to define ∇ξs take

any smooth curve γ such that γ̇(0) = ξ and use parallel

transport P−1
t to shift all the vectors s(γ(t)) into the same

vector space Eγ(0). Then (up to suppressing the J maps),

simply differentiate as normal:

∇ξs :=
d

dt

∣∣∣
t=0

P−1
t (s(γ(t)).

(iii) If you have a covariant derivative operator ∇ and

you want. . .

(a) a connection, then set ∆v ⊂ TvE to be the set of all tangent

vectors of the form Ds(π(v))ξ − Jv(∇ξs), where s is any

section such that s(π(v)) = v and ξ ∈ Tπ(v)M .

(b) a parallel transport system, then for γ : [a, b]→M and a

vector v ∈ Eγ(0, set 𝕡γ;v to be the unique section ρ ∈ Γγ(E)

such that ρ(0) = v and ∇γ̇ρ = 0.

With all that being said, we now introduce the arguably somewhat

contradictory:

Important convention: Since connections, parallel trans-

port systems and covariant derivative operators are really three

different ways of expressing the same concept, we will abuse

language and refer to all of them as a “connection” – the no-

tation will make it clear which one we mean (∆,P,∇). In fact,

since we will typically use the covariant derivative viewpoint

more often than the other two, our generic notation for a con-

nection will become ∇.
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We now move onto studying the holonomy of a connection. In the

following, we will have cause to work with piecewise smooth curves.

By definition a piecewise smooth curve γ : [a, b] → M in a manifold M

is a continuous map γ such that there exist finitely many points a0 =

a < a1 < . . . < ar = b such that γ|[ai,ai+1] : [ai, ai+1] → M is smooth

for each i = 0, . . . r − 1 (thinking of [ai, ai+1] as a one-dimensional

manifold with boundary). The simplest way to manufacture such a

curve is simply to glue two smooth curves together:

Example 32.10. Suppose γ : [a, b] → M and δ : [b, c] → M are two

smooth curves with γ(b) = δ(b). Then the concatenation of γ and δ

is the piecewise smooth curve γ ∗ δ : [a, c]→M defined by

(γ ∗ δ)(t) :=

γ(t), a ≤ t ≤ b,
δ(t), b ≤ t ≤ c.

Definition 32.11. Let π : E →M be a vector bundle with connection

∇. Suppose γ : [a, b] → M and δ : [b, c] → M are two smooth curves

with γ(b) = δ(b). We extend Axiom (ii) of Definition 29.11 and define

the parallel transport along the piecewise smooth curve γ ∗ δ
to be the linear isomorphism

Pγ∗δ : Eγ(a) → Eδ(c), Pγ∗δ := Pδ ◦ Pγ .

The same definition works for any piecewise smooth curve; as the

composition of finitely many linear isomorphisms, it is again a linear

isomorphism.

Remark 32.12. More generally, suppose γ : [a, b]→M and δ : [b1, c]→
M are two smooth curves with γ(b) = δ(b1) but b 6= b1. Then we can-

not directly concatenate γ and δ, and thus we cannot directly define

Pγ∗δ. But this is easily rectified by reparametrising. Indeed, we can

choose a diffeomorphism h : [a, b1] → [a, b] such that h(a) = a and

h(b) = b1 and replace γ with γ ◦ h. Then (γ ◦ h) ∗ δ is defined. Alter-

natively, we could reparametrise δ. This reparametrisation will have

no effect on the parallel transport thanks to Axiom (iii) from Defini-

tion 29.11. From now on we will often suppress the reparametrisation,

and speak of the concatentated curve γ ∗ δ and the parallel transport

Pγ∗δ whenever γ and δ are two curves such that γ ends (in M) where

δ begins.

Remark 32.13. It follows from Axiom (iii) that parallel transport

along piecewise smooth curves is associative:

Pγ∗(δ∗ε) = P(γ∗δ)∗ε

for three curves γ, δ, ε such that γ ends where δ begins, and δ ends

where ε begins.

Since the inverse of Pγ is Pγ− , where γ− is the reverse path – this is

part of Axiom (i), it follows that if we fix a basepoint we get a group.

Definition 32.14. Let π : E → M be a vector bundle with connec-

tion ∇. Fix p ∈ M . The holonomy group of ∇ at p is the sub-

group Hol∇(p) ⊂ GL(Ep) consisting of all parallel transport maps
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Pγ : Ep → Ep where γ is a piecewise smooth loop at p. We always

consider Hol∇(p) as carrying the subspace topology inherited from

GL(Ep).

If the base manifold M is connected then the holonomy group Recall a manifold is connected if

and only if it is path connected,

Proposition 1.37.
Hol∇(p) is – up to isomorphism – independent of p.

Lemma 32.15. Let π : E → M be a vector bundle with connection

∇. Assume that M is connected. Fix p, q ∈ M and let γ denote a

piecewise smooth curve from p to q. Then the map

Hol∇(p)→ Hol∇(q), Pδ 7→ Pγ−∗δ∗γ (32.3)

is an isomorphism.

Proof. The map (32.3) is a group homomorphism by associativity of

parallel transport, since parallel transport around γ− ∗ (δ ∗ ε) ∗ γ is

the same as parallel transport around
(
γ− ∗ δ ∗ γ

)
∗
(
γ− ∗ ε ∗ γ

)
.

Moreover it is an isomorphism as the inverse homomorphism is given

by Pδ 7→ Pγ∗δ∗γ− .

Suppose E has rank n. It is often useful to think of the holonomy

group Hol∇(p) as a subgroup of GL(n) rather than GL(Ep). This can

be done, provided we only work up to conjugation. Recall the frame

bundle Fr(E) from Definition 17.24. Fix p ∈ M and A ∈ Fr(Ep); thus

A : Rn → Ep is a linear isomorphism. Then

Hol∇(p;A) :=
{
A−1 ◦ Pγ ◦A | Pγ ∈ Hol∇(p)

}
is a subgroup of GL(n). If B ∈ Fr(Ep) is another frame then the

subgroup Hol∇(p;B) is not equal to Hol∇(p;A), but it is conjugate to

it:

Hol∇(p;B) =
{
TST−1 | S ∈ Hol∇(p;A)

}
where T := B−1 ◦A ∈ GL(n). Moreover if M is connected then Lemma

32.15 shows that if p and q are two points in M and A ∈ Fr(Ep) and

B ∈ Fr(Eq), then the subgroups Hol∇(p;A) and Hol∇(q;B) are also

conjugate in GL(n). This proves:

Corollary 32.16. Let π : E → M be a vector bundle of rank n over

a connected manifold M with connection ∇. Then for all p ∈ M , the

holonomy group Hol∇(p) can be regarded as a subgroup of GL(n),

defined up to conjugation, and in this sense it is independent of p.

We will explore applications of holonomy over the next few lec-

tures.



Will J. Merry

LECTURE 33

Curvature

Our first use of holonomy will be to define what it means for a connec-

tion on a connected manifold to be trivial.

Definition 33.1. Let π : E → M be a vector bundle over a connected

manifold, and let ∇ be a connection on E. We say that ∇ is a trivial

connection if Hol∇ is the trivial group.

This definition is consistent with Definition 28.1 and Example

29.13.

Proposition 33.2. Let π : E → M be a vector bundle over a con-

nected manifold, and let ∇ be a connection on E. Then ∇ is trivial

if and only if E is a trivial vector bundle and the parallel transport

system P is the trivial parallel transport system from Example 29.13.

Proof. Suppose Hol∇ is the trivial group, and fix p ∈ M . Define

ε : E → Ep by

ε(v) := 𝕡γ;v(1)

where γ is a smooth path in M from π(v) to p. Then ε is well-defined

because Hol∇(p) is trivial, and ε is smooth by Axiom (iv) of Definition

29.11. By Axiom (i) it follows that ε is a parallel vector bundle chart i.e. the frame (ei) corresponding to ε

is a parallel frame.on E, and thus E is the trivial bundle and P is the trivial parallel

transport system.

Conversely, if E is the trivial bundle and P is the trivial parallel

transport system, then if γ is a path in M then any parallel section ρ

along γ is of the form ρ = s ◦ γ, where s is a global parallel section of

E. Thus if γ : [0, 1]→M is a loop then for any parallel ρ along γ,

ρ(1) = s(γ(1)) = s(γ(0)) = ρ(0).

This shows Hol∇(γ(0)) is the trivial group.

It is often convenient to restrict to contractible loops.

Definition 33.3. Let π : E → M be a vector bundle over a con-

nected manifold, and let ∇ be a connection on E. Fix p ∈ M . The

restricted holonomy group Hol∇0 (p) is the subgroup of Hol∇(p)

consisting of all parallel transports around contractible (i.e. null-

homotopic) piecewise smooth loops at p.

Let π1(M,p) denote the fundamental group of M at p. The Whit-

ney Approximation Theorem 7.13 tells us that any class [γ] ∈ π1(M,p)

can be represented by a smooth map γ.

Proposition 33.4. The restricted holonomy group Hol∇0 (p) is a path-

connected normal subgroup of Hol∇(p), and there exists a surjective

group homomorphism

π1(M,p)→ Hol∇(p)
/

Hol∇0 (p). (33.1)
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Proof. Suppose γ : [0, 1] → M is a contractible piecewise smooth loop

based at p. Thus there exists a continuous map H : [0, 1] × [0, 1] → M

such that H(0, t) = γ(t), H(1, t) is the constant loop cp(t) := p

and such that H(s, ·) is a piecewise smooth loop based at p for each

s ∈ [0, 1] (using Theorem 7.17 again). Then s 7→ PH(s,·) is a path in

Hol∇0 (p) from Pγ to the Pcp . Thus Hol∇0 (p) is path-connected.

Next, if δ and γ are any two loops at p such that γ is nullhomo-

topic, then the concatenation δ− ∗ γ ∗ δ is also nullhomotopic. Thus if

Pγ ∈ Hol∇0 (p) and Pδ ∈ Hol∇(p) then Pδ ◦ Pγ ◦ Pδ− = Pδ−∗γ∗δ belongs

to Hol∇0 (p). This shows that Hol∇0 (p) is normal in Hol∇(p).

Finally, the desired homomorphism (33.1) sends [γ] to the equiva-

lence class of Pγ in the quotient for γ a smooth representative of [γ].

This is a well-defined surjective group homomorphism by the argu-

ment above.

Corollary 32.16 tells us that the holonomy groups are subgroups of

the matrix Lie group GL(n). In fact, much more is true: they are Lie

subgroups.

Theorem 33.5. Let π : E → M be a vector bundle over a connected

manifold, and let ∇ be a connection on E. Then Hol∇(p) is a Lie

group, and Hol∇0 (p) is the connected component containing the iden-

tity.

The proof of Theorem 33.5 goes beyond the scope of this course.

However a sketch is presented in the bonus section below.

We now explore what it means to say that a connection ∆ forms

an integrable distribution in the sense of Definition 14.9. This will

lead us naturally to the concept of the curvature of a connection,

which roughly speaking measures how far the connection is from being

integrable.

Definition 33.6. Let π : E → M be a vector bundle with connection

∇. We say that ∇ is a flat connection if the corresponding distri-

bution ∆ of E is integrable. The pair (E,∇) is referred to as a flat

vector bundle.

Trivial connections are always flat. To see this, let us first give an

alternative criterion for a connection to be trivial.

Lemma 33.7. Let π : E → M be a vector bundle with connection ∇.

Then ∇ is the trivial connection if and only if for every point v ∈ E
there exist a global parallel section s ∈ Γ(E) such that s(π(v)) = v.

Proof. This is just a rephrasing of the last part of Proposition 33.2. It

is clear that the trivial connection on the trivial vector bundle has this

property. Meanwhile if such a section exists through every point then

the argument in the last paragraph of the proof of Proposition 33.2

shows that the holonomy groups are trivial, whence Proposition 33.2

itself then shows that ∇ is the trivial connection.

Why is this relevant? If s ∈ Γ(E) is a global parallel section then
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s(M) ⊂ E is an embedded submanifold of E (Lemma 20.8) with

Dıs(p)
(
Ts(p)s(M)

)
= ∆s(p), ∀ p ∈M.

Thus s(M) is an integral manifold for the distribution ∆ passing

through s(p) in the sense of Definition 14.6. Therefore by Lemma

14.11 we have:

Corollary 33.8. The trivial connection is flat.

The converse is true locally. This uses the hard direction of the

Frobenius Theorem.

Theorem 33.9. Let π : E → M be a vector bundle over a connected

manifold, and suppose ∇ is a flat connection on E. Then ∇ is a lo-

cally trivial connection and Hol∇0 (p) is the trivial group for all p ∈M .

Here by a “locally trivial connection” we meant that every point

p ∈ M has a neighbourhood U such that the restriction of ∇ to the

trivial subbundle π−1(U)→ U of E is the trivial connection.

Proof. We prove the result in two steps.

1. In this step we show that ∇ is locally trivial. By the Global

Frobenius Theorem 15.4, ∆ induces a foliation of E. Let L be a leaf

of the foliation, i.e. a maximal connected integral manifold of the

distribution ∆ corresponding to ∇. We claim that π|L : L → M is

surjective. Indeed, given v ∈ L and p ∈ M , let γ : [0, 1] → M be a

smooth curve such that γ(0) = π(v) and γ(1) = p. The section 𝕡γ;v is

horizontal and thus has image contained in L. Since π(𝕡γ;v (1)) = p,

this shows that π|L is surjective.

Since π is a submersion, the Inverse Function Theorem 5.10 tells

us that π|L is a local diffeomorphism from L to M . Let U ⊂ M

be a connected and simply connected open subset over which E is

trivial. Then the intersection L ∩ π−1(U) is a disjoint union of con-

nected embedded submanifolds of L such that for each component Lk,

π|Lk : Lk → U is a diffeomorphism. Thus sk := π|−1
Lk

: U → Lk is a

section of the vector subbundle π−1(U) → U . Since Lk is an integral

submanifold of ∆|π−1(U), sk is a parallel section. Thus for every point

of L ∩ π−1(U) there is a parallel section of π−1(U). By Lemma 33.7,

the restriction of ∇ to π−1(U) is the trivial connection.

Note we have actually shown something slightly stronger than local

triviality: namely that ∇ is trivial over any connected and simply

connected set. We will use this fact in the next step.

2. In this step we show that the restricted holonomy groups are

always trivial. Fix a point p ∈ M , and let γ : [0, 1] → M be a con-

tractible piecewise smooth loop at p. Then as in the proof of Propo-

sition 33.4, there exists a continuous map H : [0, 1] × [0, 1] → M such

that H(0, t) = γ(t), H(1, t) is the constant loop cp(t) := p and such

that H(s, ·) is a piecewise smooth contractible loop based at p for each

s ∈ [0, 1]. Fix v ∈ Ep, and let L be the maximal integral manifold of ∇
passing through v. Then as in the previous step, each section 𝕡H(s,·);v
has image contained in L. Consider the map

H̃ : [0, 1]× [0, 1]→ L, H̃(s, t) := 𝕡H(s,·);v(t). (33.2)
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This map is a lift of H to L in the sense that

π(H̃(s, t)) = H(s, t).

Since H(s, 1) is independent of s, so is H̃(s, 1). Thus See the bonus section below for more

details here.

𝕡γ;v(1) = H̃(0, 1)

= H̃(1, 1)

= 𝕡cp;v(1)

= v.

Thus parallel transport around γ is trivial. Since γ was arbitrary, it

follows that Hol∇0 (p) is the trivial group. This completes the proof.

Corollary 33.10. Let π : E → M be a vector bundle over a con-

nected and simply connected manifold M , and let ∇ be a connection

on E. Then ∇ is flat if and only if E is the trivial bundle and ∇ is the

trivial connection.

Proof. If M is simply connected then Hol∇(p) = Hol∇0 (p) for all p ∈
M . Thus the claim is immediate from Proposition 33.2 and Theorem

33.9.

A connection is flat if and only if the vector space Γ(∆) of horizon-

tal vector fields is a Lie subalgebra of the space X(E) = Γ(TE) of all

vector fields on E. The curvature of a connection gives a quantitative

way to measure how far a given connection is from being flat.

Definition 33.11. Let π : E →M be a vector bundle with connection

∇ and connection map K : TE → E. The curvature tensor R∇ of ∇
is defined as follows. Fix vector fields X,Y ∈ X(M) and v ∈ E. Let X

and Y denote the horizontal lifts of X and Y to E (cf. Definition 28.9)

and set

R∇(X,Y )(v) := −K
(
[X,Y ](v)

)
. (33.3)

That is, we take the vertical component of the tangent vector [X,Y ](v) ∈
TvE, which therefore belongs to VpE, and then project it to Ep via

the map pr2 : V E → E.

The minus sign on the right-hand side of (33.3) may look a little

unnatural, and indeed some authors define it with the other sign. Our

preference for this sign convention will become clear next lecture when

we give an alternative way of expressing the curvature (see Theorem

35.10).

Remark 33.12. The meaning of the word “curvature” will become

apparent when we study Riemannian Geometry in the second half of

the course. We will see that the curvature of a (Riemannian) manifold

does indeed correspond to what you would naively guess it does. For

example, the sphere Sn with its standard Euclidean metric is “posi-

tively” curved.

Since K(ζ) = p̃r2(ζv) and pr2 : V E → E is an vector bundle

isomorphism along π : E →M , we have:
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Corollary 33.13. Let π : E →M be a vector bundle with connection

∇. Then ∇ is flat if and only if the curvature R∇ is identically zero.

If s is a section of E then the correspondence

p 7→ R∇(X,Y )(s(p))

defines another section of E, since it satisfies the section property and

is smooth (being the composition of smooth maps). We write this

section as R∇(X,Y )(s). Thus we can think of R∇ as defining a map

R∇ : X(M)× X(M)× Γ(E)→ Γ(E).

The main result of this lecture proves that this map is a point opera-

tor in all three variables.

Theorem 33.14. Let π : E → M be a vector bundle with connection

∇. Then R∇ is C∞(M)-linear in all three variables, and antisymmet-

ric in the first two variables. Thus R∇ can be thought of as a section

of the bundle Hom
(∧2

(TM),Hom(E,E)
)

=
∧2

(T ∗M)⊗ E ⊗ E∗.

This means that for any fixed p ∈M we can unambiguously define

R∇(ξ, ζ) : Ep → Ep, ξ, ζ ∈ TpM (33.4)

by picking any vector fields X,Y such that X(p) = ξ and Y (p) = ζ

and setting

R∇(ξ, ζ)(v) := R∇(X,Y )(v)

Proof. We prove the result in two steps.

1. By part (iii) of Lemma 28.10, if X,Y, Z are three vector fields

on M and s ∈ Γ(E) we have

[X + Y ,Z](s(p))v = [X + Y , Z](s(p))v

= [X,Z](s(p))v + [Y ,Z](s(p))v.

Since pr2 : V E → E is a vector bundle morphism along π, this shows

that for any section s ∈ Γ(E), we have

R∇(X + Y,Z)(s) = R∇(X,Z)(s) +R∇(Y,Z)(s).

Next, since the Lie bracket is anti-symmetric we certainly have

R∇(X,Y )(s) = −R∇(Y,X)(s).

Now suppose f ∈ C∞(M). Then by part (ii) of Lemma 28.10 and

Problem D.5, we have

[fX, Y ](s(p))v = [(f ◦ π)X,Y ](s(p))v

= (f ◦ π)(s(p)) [X,Y ](s(p))v − Y (f ◦ π)(s(p))X(s(p))v

= (f ◦ π)(s(p)) [X,Y ](s(p))v

since X(p)v = 0 by definition of a horizontal lift. Thus

R∇(fX, Y )(s) = fR∇(X,Y )(s).
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We have thus show that for a given section s, the map R∇(·, ·)(s) is

alternating and bilinear over C∞(M). Thus it defines a section of the cf. Theorem 36.10.

bundle Hom(
∧2

(TM),Hom(E,E)).

2. It remains to show that R∇ is C∞(M)-linear in the third argu-

ment, ie. that

R∇(X,Y )(fs) = fR∇(X,Y )(s).

This is a bit trickier. Since we already know R∇ is a point operator in

the first two variables, it is sufficient to show that for fixed p ∈ M and

ξ, ζ ∈ TpM , the map R∇(ξ, ζ) : Ep → Ep from (33.4) is R-linear.

Let µc : E → E denote scalar multiplication. Any horizontal lift is

µc-invariant:

X(cp) = X(µc(p)) = Dµc(p)X(p).

For c 6= 0, µc is a diffeomorphism, and thus we can write this as

(µc)∗(X) = X. Proposition 8.19 therefore tells us that for c 6= 0 we

have

(µc)∗[X,Y ] = [X,Y ].

Now we use Theorem 31.5 to obtain i.e. the second commutative diagram

in (31.6).

K
(
[X,Y ]

)
= K

(
(µc)∗[X,Y ]

)
= µc ◦K

(
[X,Y ]

)
.

This shows that R∇(ξ, ζ) : Ep → Ep is a homogeneous map, i.e.

R∇(ξ, ζ)(cv) = cR∇(ξ, ζ)(v) for c 6= 0. Since R∇(ξ, ζ) is differen-

tiable at 0p ∈ Ep, Problem M.1 implies that R∇(ξ, ζ) it a linear map.

This completes the proof.

Bonus Material for Lecture 33

In this bonus section we first sketch of the proof of Theorem 33.5, and

then clear up a detail in the proof of Theorem 33.9 that was glossed

over.

Proof of Theorem 33.5. A difficult theorem, proved independently by

Kuranishi and Yamabe, says that any path connected subgroup of a Yamabe’s proof is very short, and

quite easy to understand. See here.Lie group is itself a Lie group. Applying this to Hol∇0 (p) ⊂ GL(n)

shows that Hol∇0 (p) is a Lie group. Since M is connected and second

countable, its fundamental group is countable. Thus Hol∇(p)
/

Hol∇0 (p)

is countable by Proposition 33.4. This implies that Hol∇(p) is also

a Lie group with Hol∇0 (p) the connected component containing the

identity.

Now let us return to the proof of Theorem 33.9; more specifically,

to the map H̃ from (33.2). In the proof of Step 2 of Theorem 33.9, we

claimed that the fact that H(s, 1) was independent of s implied that

H̃(s, 1) was also independent of s. Why is this true?

The answer is hiding a small amount of algebraic topology. In- Hence the relegation to the bonus

section.

https://projecteuclid.org/download/pdf_1/euclid.ojm/1200685927
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deed, the argument in Step 1 actually shows that π|L : L → M is a

covering space. Covering spaces enjoy the unique homotopy lift-

ing property. One way to phrase this is as follows: if π : Y → X

is a covering space and γ, δ : [0, 1] → X are two paths in X which

are homotopic with fixed endpoints, then if p ∈ Y is any point in Y

such that π(p) = γ(0) then there are unique lifts γ̃, δ̃ of γ and δ that

γ̃(0) = δ̃(0) = p, and moreover these lifts also satisfy γ̃(1) = δ̃(1).
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LECTURE 34

The Holonomy Algebra

In this lecture we define the holonomy algebra of a connection. We

first recall how to see the endomorphism bundle of a vector bundle as

a Lie algebra bundle.

We begin at the level of linear algebra. Let V be a vector space.

The vector spaces End(V ) and gl(V ) are canonically isomorphic. Ex-

plicitly, the isomorphism End(V )→ gl(V ) is given by differentiation at

0:

A ∈ End(V ) ⇒ DA(0) ∈ gl(V ). (34.1)

Nevertheless, as algebras they are different: End(V ) admits the struc-

ture of an associative algebra under composition

(A,B) 7→ A ◦B, A,B ∈ End(V ). (34.2)

Meanwhile gl(V ) admits the structure of a Lie algebra under commu-

tation

(A,B) 7→ [A,B] = A ◦B −B ◦A, A,B ∈ gl(V ). (34.3)

Now let us investigate what this means in terms of bundles. Let

π : E → M be a vector bundle, and let End(E) → M denote the

associated endomorphism bundle. This bundle admits the structure

of algebra bundle (Definition 19.29) in two ways: firstly, via fibrewise

composition (34.2), and secondly via fibrewise commutation (34.3).

Convention. To help distinguish the two, we denote by gl(E)

the bundle End(E), thought of as a Lie algebra bundle under

the Lie bracket (34.3). Meanwhile the algebra structure on

End(E) should always be understood as coming from composi-

tion (34.2).

Thus both End(E) and gl(E) have the same underlying vector bun-

dle structure, but as algebra bundles they are different. Our default

choice of notation remains End(E) – we use the notation gl(E) only

when it is important to emphasise the Lie algebra structure.

Definition 34.1. Let π : E → M be a vector bundle and let ∇ be a

connection on E. We define the holonomy algebra at p ∈ M , writ-

ten hol∇(p), to be the Lie algebra of Hol∇(p). Since Hol∇(p) is a Lie

subgroup of GL(Ep) by Theorem 33.5, it follows that hol∇(p) is a Lie

subalgebra of gl(Ep), with Lie bracket given by matrix commutation

(cf. Proposition 11.9):

[A,B] := A ◦B −B ◦A, A,B ∈ hol∇(p).

Last modified: July 17, 2021.
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We then define

hol∇ :=
⊔
p∈M

hol∇(p).

We call hol∇ the holonomy algebra of ∇.

The holonomy algebra is itself a vector bundle over M . In fact, it is

a Lie algebra subbundle of gl(E). Before proving this, we need another

definition.

Definition 34.2. Let π : E → M be a vector bundle and let ∇ be

a connection on E. Suppose F ⊂ E is a vector subbundle of E. We Alternatively, in terms of distribu-
tions: a connection ∆ is reducible to

F if ∆v ⊂ TvF for all v ∈ F .
say that the connection ∇ is reducible to F if F is invariant under

parallel transport in the sense that if γ : [a, b] → M is a smooth curve

then Pγ(Fγ(a)) ⊆ Fγ(b).

On Problem Sheet M you will show that if ∇ is reducible to F

then ∇ induces a connection on F . In fact, the hypothesis that F is a

vector subbundle of E is superfluous, as the next lemma shows.

Lemma 34.3. Let π : E → M be a vector bundle over a connected

manifold and let ∇ be a connection on E. Assume F ⊂ E is a subset

invariant under parallel transport with the property that there exists

p ∈M such that F ∩ Ep is a linear subspace of Ep. Then F is a vector

subbundle of E, and ∇ is reducible to F .

Proof. Since Pγ : Eγ(a) → Eγ(b) is a linear isomorphism for any

smooth curve γ : [a, b] → M , it follows that if F ∩ Ep is a linear

subspace of Ep for some point p ∈ M then F ∩ Eq is a linear subspace Recall a vector bundle chart is the
same thing as a local frame, cf.

Lemma 20.6.
of Eq for every point q ∈ M . Vector subbundle charts on F can be

obtained by taking the restriction of the vector bundle charts on E

built from Proposition 32.4.

Next, by part (ii) of Problem M.4, ∇ induces a connection ∇End

on End(E). Since End(E) and gl(E) are the same vector bundle, we

can also regard ∇End as a connection ∇gl on gl(E). We denote the

associated parallel transport systems by PEnd and Pgl.

Proposition 34.4. Let π : E → M be a vector bundle, and let

∇ denote a connection on M . Then PEnd respects the composition

algebra structure on End(E) and Pgl respects the Lie algebra structure

on gl(E).

Proof. We begin by identified what parallel transport with respect to

∇End in the bundle End(E) looks like. Suppose p ∈ M and γ : [0, 1] →
M is a smooth curve with γ(0) = p. Abbreviate by Pt : Ep → Eγ(t)

parallel transport along the curve r 7→ γ(r) for 0 ≤ r ≤ t with respect

to ∇ and similarly by

PEnd
t : End(Eγ(0))→ End(Eγ(t)).

the parallel transport with respect to ∇End. Suppose C ∈ Γγ(End(E))

is a section along γ, i.e.

C(t) : Eγ(t) → Eγ(t)
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is a linear map for each t ∈ [0, 1]. It follows from Problem M.3, Prob-

lem M.4 and Proposition 32.7 that a section C is parallel along γ with

respect to ∇End if and only if for every section ρ ∈ Γγ(E) which is

parallel along γ with respect to ∇, the section C(ρ) ∈ Γγ(E) defined

by t 7→ C(t)ρ(t) is also parallel with respect to γ. This means that for

A ∈ End(Eγ(0)) we have

PEnd
t (A) = Pt ◦A ◦ P−1

t . (34.4)

From this equation it is immediate that

PEnd
t (A ◦B) = PEnd

t (A) ◦ PEnd
t (B),

which shows that PEnd respects the algebra structure on End(E).

Next, by (34.1) the parallel transport Pgl
t on gl(E) is given by differen-

tiating PEnd
t at id:

Pgl
t := DPEnd

t (id) (34.5)

Since PEnd
t is a linear map, Problem B.3 tells us that its differential is

given by

DPEnd
t (id)(A) = J−1

0 ◦ PEnd
t (A) ◦ J0

Thus from (34.4) we see that

Pgl
t ([A,B]) =

[
Pgl
t (A),Pgl

t (B)
]
,

which shows that Pgl respects the algebra structure on gl(E).

We are now ready to prove that the holonomy algebra bundle is a

Lie subbundle of gl(E).

Theorem 34.5. Let π : E → M be a vector bundle over a connected

manifold and let ∇ be a connection on E. Then hol∇ is a Lie algebra

subbundle of gl(E). Moreover the induced connection ∇End on gl(E)

is reducible to hol∇.

Proof. Suppose p ∈ M and γ : [0, 1] → M is a smooth curve

with γ(0) = p, and let PEnd
t be as in the proof of Proposition 34.4.

Comparing (34.4) and Lemma 32.15, we see that the isomorphism

Hol∇(p) ∼= Hol∇(γ(t)) is exactly given by PEnd
t :

PEnd
t : Hol∇(p)

∼−→ Hol∇(γ(t)).

If we differentiate PEnd
t at id ∈ Hol∇(p), we get a linear map:

DPEnd
t (id) : hol∇(p)→ hol∇(γ(t)).

Since PEnd
t is itself linear map, this is equivalent to the the statement

that PEnd
t defines a map

PEnd
t : hol∇(p)→ hol∇(γ(t)).

By (34.5) this exactly the assertion that hol∇ is invariant under par-

allel transport Pgl. Lemma 34.3 then implies that hol∇ is a vector

subbundle of gl(E) and that the connection ∇gl is reducible to hol∇.
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It remains to show that hol∇ is actually a Lie algebra subbun-

dle. For this we apply Proposition 32.4 to the vector bundle gl(E)

equipped with the connection ∇gl. Let ε denote the vector bundle

chart on gl(E) corresponding to the local frame (ei). This bundle

chart has the property that if C is a parallel sections along a curve of

the form γ = γp,ξ then

εγ(t)(C(t)) = εp(C(0)). (34.6)

Thus if C,D are parallel then applying this to C,D and [C,D] (which

is also parallel by Proposition 34.4) we obtain

εγ(t)

(
[C,D](t)

)
= εp

(
[C,D](0)

)
= εp

(
[C(0), D(0)]

)
=
[
εp(C(0)), εp(D(0))

]
=
[
εγ(t)(C(t)), εγ(t)(D(t))

]
Thus the vector bundle charts on gl(E) constructed in this way all

preserve the Lie bracket, and hence may be taken as Lie algebra bun-

dle charts on gl(E). Moreover these charts restrict to Lie algebra

charts on hol∇, since the latter is invariant under parallel transport by

the first part of the proof.



Will J. Merry

LECTURE 35

Reinterpreting Curvature

This lecture is devoted to giving two additional viewpoints on the

curvature – one is geometric in nature (Proposition 35.3) and the

other is useful for computations (Definition 35.7). Along the way we

state the famous Ambrose-Singer Holonomy Theorem, whose proof

will follow later in the course.

We begin with the following technical lemma, which is a souped-up

version of Problem E.5.

Lemma 35.1. Let M be a smooth manifold and let X,Y be vector

fields on M with local flows Φt and Ψt respectively. Fix p ∈ M and

consider the curve If Φ and Ψ commute the curve γ is

constant.

γ : [0, ε)→M, γ(t) := Ψ−
√
t ◦ Φ−

√
t ◦Ψ√t ◦ Φ√t(p),

which is well-defined for small enough ε. If f ∈ C∞(U) is a smooth

function on a neighbourhood U of p then

[X,Y ](f)(p) = lim
t→0

f(γ(t))− f(γ(0))

t
.

Proof. Let δ(t) := γ(t2). Then we claim that

(i) (f ◦ δ)′(0) = 0,

(ii) (f ◦ δ)′′(0) = 2[X,Y ](f)(p).

This implies

[X,Y ](f)(p) =
1

2
(f ◦ δ)′′(0)

= lim
t→0

f(δ(t))− f(δ(0))

t2

= lim
t→0

f(δ(
√
t))− f(δ(0))

t

= lim
t→0

(f(γ(t))− f(γ(0))

t
.

To prove (i) and (ii), consider the rectangles

A(s, t) := Ψs ◦ Φt(p)

B(s, t) := Φ−s ◦Ψt ◦ Φt(p)

C(s, t) := Ψ−s ◦ Φ−t ◦Ψt ◦ Φt(p).

Then δ(t) = C(t, t) and C(0, t) = B(t, t) and B(0, t) = A(t, t).

Abbreviate

∂s(f ◦ C)(0, 0) := D(f ◦ C)(0, 0)

[
∂

∂s

∣∣∣
s=0

, 0

]
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and similarly for the other partial derivatives. Then by the chain rule

(f ◦ δ)′(0) = ∂s(f ◦ C)(0, 0) + ∂t(f ◦ C)(0, 0)

= ∂s(f ◦ C)(0, 0) + ∂s(f ◦B)(0, 0) + ∂t(f ◦B)(0, 0)

= ∂s(f ◦ C)(0, 0) + ∂s(f ◦B)(0, 0) + ∂s(f ◦A)(0, 0) + ∂t(f ◦A)(0, 0)

= −Y (f)(p)−X(f)(p) + Y (f)(p) +X(f)(p)

= 0.

This proves (i). To prove (ii) we start from

(f ◦δ)′′(0) = ∂ss(f ◦C)(0, 0)+2∂ts(f ◦C)(0, 0)+∂tt(f ◦C)(0, 0). (35.1)

Since ∂s(f ◦ C) = −Y (f) ◦ C, the first term on the right-hand side of

(35.1) is equal to

∂ss(f ◦ C)(0, 0) = ∂s(−Y (f) ◦ C)(0, 0) = Y (Y (f))(p).

Similarly since

∂s(f ◦A) = Y (f) ◦A, ∂s(f ◦ Φs) = −X(f) ◦B,

and

∂t(f ◦A)(0, t) = X(f) ◦A(0, t),

we obtain

2∂ts(f ◦ C)(0, 0) = −2Y (Y (f)(p))

and

∂tt(f ◦ C)(0, 0) = Y (Y (f))(p) + 2[X,Y ](f)(p).

Substituting these into (35.1) gives

(f ◦ δ)′′(0) = 2Y (Y (f))(p)− 2Y (Y (f))(p) + 2[X,Y ](f)(p),

which proves (ii).

Remark 35.2. The curve γ from the statement of Lemma 35.1 is

typically not differentiable (not even right differentiable) at 0. Thus

strictly speaking, the tangent vector γ̇(0) is not defined. However if we

formally define a tangent vector γ̇(0) by declaring that

γ̇(0)(f)
def
= lim

t→0

f(γ(t))− f(γ(0))

t

then γ̇(0) is a well-defined element of TpM . In this sense the conclu-

sion of Lemma 35.1 can be restated as

[X,Y ](p) = γ̇(0).

We will use this convention without comment in the future.

Suppose now ξ, ζ ∈ TpM are two fixed tangent vectors. Choose

vector fields X, Y such that X(p) = ξ and Y (p) = ζ. We may without

loss of generality assume that [X,Y ] = 0 on a neighbourhood of p. Let

Φt and Ψt denote the local flows of X and Y . Since [X,Y ] = 0 near

p, by either Lemma 35.1 above (or Problem E.5), for sufficiently small

t > 0 the curve ηt obtained by concatenating the four curves:
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(i) s 7→ Φs(p) for 0 ≤ s ≤
√
t,

(ii) s 7→ Ψs ◦ Φ√t(p) for 0 ≤ s ≤
√
t,

(iii) s 7→ Φ−s ◦Ψ√t ◦ Φ√t(p) for 0 ≤ s ≤
√
t,

(iv) s 7→ Ψ−s ◦ Φ−
√
t ◦Ψ√t ◦ Φ√t(p) for 0 ≤ s ≤

√
t,

is a piecewise smooth loop based at p. See Figure 35.1.

Figure 35.1: The piecewise

smooth loop ηt

Fix v ∈ Ep and consider the curve in E given by

t 7→ Pηt(v) = 𝕡ηt;v(1).

This is smooth by Axiom (iv). Since ηt is a loop, its image is con-

tained in Ep, and hence its tangent vector at t = 0 is vertical: Do not confuse (35.2) with the tan-
gent vector 𝕡̇ηt;v(0)!

d

dt

∣∣∣
t=0

Pηt(v) ∈ VvE. (35.2)

is a vertical tangent vector in TvE. The following statement can be

thought of as a geometric interpretation of the curvature.

Proposition 35.3. The curvature operator R∇(ξ, ζ) : Ep → Ep is

given by

R∇(ξ, ζ)(v) = −J−1
v

(
d

dt

∣∣∣
t=0

Pηt(v)

)
.

In words: The curvature at v is the time derivative of parallel trans-

porting v around shorter and shorter loops ηt.

Proof. Let Φt and Ψt denote the local flows of the horizontal lifts X

and Y . Then by Problem E.4, we have

π ◦ Φt = Φt ◦ π, π ◦Ψt = Ψt ◦ π,

and by definition of the horizontal lift, for all v ∈ E sufficiently close

to Ep, we have

Φt(v) = 𝕡δ;v(t), where δ(t) := Φt(p).

and similarly

Ψt(v) = 𝕡ε;v(t), where ε(t) := Ψt(p).

Thus for v ∈ Ep and t > 0 sufficiently small, one has

Pηt(v) = Ψ−
√
t ◦ Φ−

√
t ◦Ψ√t ◦ Φ√t(v).

By Lemma 35.1 we have

[X,Y ](v) =
d

dt

∣∣∣
t=0

Pηt(v).

Since d
dt

∣∣
t=0

Pηt(v) is vertical, by (31.1) we have

K

(
d

dt

∣∣∣
t=0

Pηt(v)

)
= J−1

v

(
d

dt

∣∣∣
t=0

Pηt(v)

)
.

Thus

R∇(ξ, ζ)(v) = −J−1
v

(
d

dt

∣∣∣
t=0

Pηt(v)

)
as desired.
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Remark 35.4. The preceding proof gives another way to see that R∇

is a point operator in the third variable, which bypasses the use of

Theorem 31.5: Define a curve `(t) in GL(Ep) by

`(t)v := Pηt(v)

for small t > 0. Thus ˙̀(0) ∈ Tid GL(Ep) = gl(Ep). Then Proposition

35.3 tells us that

R∇(ξ, ζ) = − ˙̀(0) ∈ End(Ep)

is a linear operator.

We now investigate how curvature affects the holonomy algebra. We

first have:

Corollary 35.5. Let π : E → M be a vector bundle and suppose ∇
is a connection on E. Then for all x ∈ M and ξ, ζ ∈ TpM , the linear

operator R∇(ξ, ζ) ∈ End(Ep) actually belongs to hol∇(p).

Proof. This is immediate from Proposition 35.3.

Corollary 35.5 actually shows us rather more: namely, how the

holonomy algebra hol∇(p) is influenced by the curvature across the

entire manifold. Indeed, if γ is a smooth path in M from q to p and

ξ, ζ ∈ TpM , then the operator

PEnd
γ (R∇(ξ, ζ)) = Pγ ◦R∇(ξ, ζ) ◦ P−1

γ

also belongs to hol∇(p). The next theorem, which is one of the corner-

stones of the subject, tells us this is all there is.

Theorem 35.6 (The Ambrose–Singer Holonomy Theorem). Let

π : E → M be a vector bundle over a connected manifold M and

let ∇ be a connection on E. Then for any p ∈ M , the holonomy alge-

bra hol∇(p) at p is the vector subspace of End(Ep) spanned by all the

elements of the form

Pγ ◦R∇(ξ, ζ) ◦ P−1
γ , q ∈M, ξ, ζ ∈ TqM

where γ is a piecewise smooth path in M from q to p.

In Lecture 42 we will prove a version of the Ambrose–Singer Holon-

omy Theorem for principal bundles. Theorem 35.6 is a corollary of

this more general principal bundle version, as you will prove on Prob-

lem Sheet O.

Instead, now we work towards deriving a more convenient formula

for R∇. As with our approach to covariant derivatives, it will be useful

to formulate this in the more general setting of sections along a map.

Definition 35.7. Let π : E → N denote a vector bundle with con-

nection ∇, and let ϕ : M → N denote a smooth map. Define for

X,Y ∈ X(M) and s ∈ Γϕ(E)

R∇ϕ (X,Y )(s) = ∇ϕX∇
ϕ
Y s−∇

ϕ
Y∇

ϕ
Xs−∇

ϕ
[X,Y ]s. (35.3)
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We will prove next lecture that for ϕ = id we have

R∇id = R∇.

One can interpret (35.3) as

R∇ϕ (X,Y ) = [∇ϕX ,∇
ϕ
Y ]−∇ϕ[X,Y ].

The first term measures the failure of ∇ϕX and ∇ϕY to commute, and

the second term is subtracted to make the following result true.

Proposition 35.8. The operator R∇ϕ is C∞(M)-linear in all three

variables, and antisymmetric in the first two variables.

Proof. We prove only that R∇ϕ (fX, Y )(s) = fR∇ϕ (X,Y )(s); the re-

maining computations are similar and left as an exercise. By Problem

D.5 we have [fX, Y ] = f [X,Y ]− Y (f)X and hence

R∇ϕ (fX, Y )(s) = ∇ϕfX∇
ϕ
Y s−∇

ϕ
Y∇

ϕ
fXs−∇

ϕ
[fX,Y ]s

= f∇ϕX∇
ϕ
Y s−∇

ϕ
Y (f∇ϕXs)−∇

ϕ
f [X,Y ](s) +∇ϕY (f)Xs

= f
(
∇ϕX∇

ϕ
Y s−∇

ϕ
Y∇

ϕ
Xs−∇

ϕ
[X,Y ]s

)
− Y (f)∇ϕXs+ Y (f)∇ϕXs

= fR∇ϕ (X,Y )(s).

This completes the proof.

Since R∇ϕ is C∞(M)-linear is all variables, it is a point operator in

all three variables by Theorem 20.20, and hence R∇ϕ (ξ, ζ)(v) is well

defined for any ξ, ζ ∈ TpM and v ∈ Eϕ(p).

Proposition 35.9. Let π : E → N denote a vector bundle with

connection ∇, and let ϕ : M → N denote a smooth map. Then for all

p ∈M , ξ, ζ ∈ TpM and v ∈ Eϕ(p) we have

R∇ϕ (ξ, ζ)(p) = R∇id
(
Dϕ(p)ξ,Dϕ(p)ζ

)
(v). (35.4)

In particular, if ϕ : M → N is a diffeomorphism then for all X,Y ∈
X(M) and s ∈ Γϕ(E) we have

R∇id(ϕ∗X,ϕ∗Y )(s) = R∇ϕ (X,Y )(s).

Proof. Assume X,Y ∈ X(M) are ϕ-related to vector fields Z,W ∈
X(N), and assume s ∈ Γϕ(E) has the property that s(p) = s̃(ϕ(p)) for

some section s̃ of E and all x ∈ M . Then by repeatedly applying the

chain rule for covariant derivatives (31.9) we have

∇ϕX∇
ϕ
Y s = ∇ϕX∇

ϕ
Y (s̃ ◦ ϕ)

= ∇ϕX∇
ϕ
W◦ϕs̃

= ∇ϕX((∇W s̃) ◦ ϕ)

= ∇ϕZ◦ϕ∇W s̃

= (∇Z∇W s̃) ◦ ϕ.

Similarly ∇ϕY∇
ϕ
Xs = (∇W∇Z s̃) ◦ ϕ. Moreover by Problem D.6 we have

∇ϕ[X,Y ]s = (∇[Z,W ]s̃) ◦ ϕ, and hence

R∇ϕ (X,Y )(s) =
(
R∇id(Z,W )(s̃)

)
◦ ϕ. (35.5)
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Since both sides of (35.4) are point operators, the general case fol-

lows from this special case. For sections, this is easy: sections of the

form s̃ ◦ ϕ locally generate Γϕ(E) over C∞(M). For vector fields, the

argument is a bit subtler. In general for a given ξ ∈ TpM it is not pos- This argument is due to Alessandro

Pigati.sible (even locally) to find vector fields X,Z on M and N respectively

which are ϕ related and satisfy X(p) = ξ. Nevertheless this is the case

if either ϕ is an embedding (when dimM ≤ dimN) or a submersion

(when dimM ≥ dimN). This however suffices, since every map ϕ

can be written as a composition of an embedding and a submersion

ϕ = ψ ◦ ι, where ι : M ↪→M ×N is the map p 7→ (p, q0) (for some fixed

q0 ∈ N) and ψ : M × N → N is the map (p, q) 7→ ϕ(p). Thus arguing

as in (35.5) gives us

R∇ϕ (ξ, ζ)(v) = R∇ψ
(
Dι(p)ξ,Dι(p)ζ

)
(v)

= R∇id
(
Dϕ(p)ξ,Dϕ(p)ζ

)
(v).

We conclude today’s lecture by completing our discussion of curva-

ture and proving that for ϕ = id the operator R∇id from Definition 35.7

agrees with the curvature R∇.

Theorem 35.10. Let π : E → M denote a vector bundle with connec-

tion ∇. Then R∇id = R∇.

Proof. Consider R2 with coordinates (s, t). Let S, T denote the vector We break our usual convention that

the coordinates on R2 are (u1, u2)

here so as to simplify the notation in
this proof.

fields ∂
∂s and ∂

∂t on R2 respectively. Now fix p ∈ M , ξ, ζ ∈ TpM and

v ∈ Ep. Choose a smooth map γ : (−ε, ε) × (−ε, ε) → M such that

γ(0, 0) = p and

Dγ(0, 0)S(0, 0) = ξ, Dγ(0, 0)T (0, 0) = ζ.

Now define a section ρ ∈ Γγ(E) such that ρ(0, 0) = v and such that:

(i) ρ is parallel along the curve t 7→ γ(0, t),

(ii) ρ is parallel along the curve s 7→ γ(s, t) for all t ∈ (−ε, ε).

Such a section exists and is unique by Proposition 29.9. To see this

first apply Proposition 29.9 along to curve to t 7→ γ(0, t) so that (i)

is satisfied. Then define ρ along each curve s 7→ γ(s, t) again via

Proposition 29.9. The fact that the resulting section ρ is smooth in

both s and t is due to the fact that integral curves depend smoothly

on initial conditions (see the proof of Proposition 29.9 and Theorem

9.1). Using (ii) and the fact that [S, T ] = 0 we obtain

R∇γ (S(0, 0), T (0, 0))(v) = (∇γS∇
γ
T ρ)(0, 0).

Let Ps : Ep → Eγ(s,0) denote parallel transport along r 7→ γ(r, 0) for

0 ≤ r ≤ s and let Ps,t : Eγ(s,0) → Eγ(s,t) denote parallel transport

along r 7→ γ(s, r) for 0 ≤ r ≤ t. Then by Proposition 32.7 we have

(∇γT ρ)(s, 0) =
d

dt

∣∣∣
t=0

P−1
s,t (ρ(s, t))

and thus

R∇γ (S(0, 0), T (0, 0))(p) =
d2

dsdt

∣∣∣
(s,t)=(0,0)

P−1
s P−1

s,t (ρ(s, t))
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Thus by the definition of the derivative as a limit, the right-hand side

is equal to

lim
s,t→0

P−1
s P−1

s,t (ρ(s, t))− P−1
s P−1

s,0(ρ(s, 0))− P−1
0 P−1

0,t (ρ(0, t)) + P−1
0 P−1

0,0(ρ(0, 0))

st

Since ρ(s, 0) = Ps(v) by assumption (ii), ρ(0, t) = P0,t(v) by assump-

tion (i) and Ps,0 = id by definition we can simplify this to

lim
s,t→0

P−1
s P−1

s,t (ρ(s, t))− v
st

Now take s = t to obtain

R∇γ (S(0, 0), T (0, 0))(p) = lim
t→0

P−1
t P−1

t,t (ρ(t, t))− v
t2

.

Finally set r =
√
t and observe that the P−1

t P−1
t,t (ρ(t, t)) is exactly

the parallel transport of v along the inverse of the loop ηr used in The inverse is consistent with the

minus sign in our original Definition

33.11 of R∇.
Proposition 35.3. Thus we obtain

R∇γ (S(0, 0), T (0, 0))(v) = R∇(ξ, ζ)(v).

Finally by Proposition 35.9 we have

R∇γ (S(0, 0), T (0, 0))(p) = R∇id(ξ, ζ)(v).

This completes the proof.
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LECTURE 36

Exterior Covariant Differentials

In this lecture we will push our treatment of differential forms a little

further and allow them to take values in an arbitrary vector space,

or later, a vector bundle. This additional formalism will grant us

yet another viewpoint on connections of vector bundles: as a graded

derivation d∇ on the space of bundle-valued forms. In contrast to the

normal exterior differential d, one does not necessarily have d ◦ d = 0.

In fact, d∇ ◦ d∇ = R∇. Thus the curvature can be throught of as the

obstruction to (Ω•(M,E), d∇) forming a chain complex.

As usual, we start at the level of linear algebra. If V is a vector

space, we have studied extensively the exterior wedge
∧k
V ∗, and its

identification with the space Altk(V ) of alternating multilinear maps

A : V × · · · × V︸ ︷︷ ︸
k copies

→ R.

Now suppose W is another vector space. In Definition 19.23 we actu-

ally originally introduced the space Altk(V,W ) of alternating multilin-

ear maps

A : V × · · · × V︸ ︷︷ ︸
k copies

→W.

Moreover Lemma 19.25 and Corollary 19.3 show that

Altk(V,W ) ∼= Hom
(∧k

V,W
)

∼=
(∧k

V
)∗ ⊗W

∼=
∧k
V ∗ ⊗W.

This gives:

Lemma 36.1. Let V and W be two vector spaces. For k ≥ 0 there is a

canonical isomorphism between Altk(V,W ) and
∧k
V ∗ ⊗W .

We now generalise this idea. If E is a vector bundle over M and V

is a vector space, we denote by E ⊗ V the bundle over M whose fibre

is (E ⊗ V )p := Ep ⊗ V (equivalently, this is the bundle obtained by

tensoring E with the trivial bundle M × V →M).

Definition 36.2. Let M be a smooth manifold and let V be a vector

space. A differential k-form on M with values in V (also called a

vector-valued form) is a section of the bundle
∧k
T ∗M ⊗ V → M .

We denote the space of sections by

Ωk(M,V ) := Γ
(∧k

T ∗M ⊗ V
)
.

This is not as scary as it looks (and reduces to the normal defini-

tion if V = R). For instance, a V -valued one-form ω associates to

every p ∈M a linear map ωp : TpM → V . Thus if we feed ωp a tangent
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vector ξ we get an element of V , rather than an element of R. If X is

a vector field on M and f : M → V is a smooth function then

X(f) : M → V, X(f)(p) := J−1
f(p)

(
Df(p)X(p)

)
is another smooth function. Thus the analogue of Proposition 8.2

holds for vector-valued functions as well. In fact, almost all of our

earlier work on differential forms goes through without any changes

(just insert V in appropriate places). Instead of regurgitating unneces-

sary details, we content ourselves with merely stating a few pertinent

results.

Theorem 36.3 (The Vector-valued Differential Form Criterion). Let

M be a smooth manifold and let U ⊂ M be a non-empty open set,

and let V be a vector space. Then there is a canonical identification Warning: Unfortunately we tend to

use the same letters U, V,W etc to

denote both open sets in manifolds
and arbitrary vector spaces. This

means expressions like Ωk(U, V ) can

be somewhat confusing. . .

between Ωk(U, V ) and alternating C∞(M)-multilinear functions

X(U)× · · · × X(U)︸ ︷︷ ︸
k copies

→ C∞(U, V ).

Assume now that V has dimension n, and let (e1, . . . , en) be a

basis. If ω ∈ Ωk(M,V ) and p ∈ M , then for any tangent vectors

ξ1, . . . , ξk ∈ TpM , we can write ωp(ξ1, . . . , ξk) as a linear combination

of the ei. If we denote the coefficient of ei by ωip(ξ1, . . . , ξk), we can

thus write

ωp(ξ1, . . . , ξk) = ωip(ξ1, . . . , ξk) ei.

Since ωp is an alternating multilinear map, so is each ωip. It follows

that ωi is a normal differential k-form on M , and we can write

ω = ωi ⊗ ei.

This is of course, consistent with thinking of ω as a section of the

tensored bundle
∧k
T ∗M ⊗ V . This allows us to extend the exterior Exercise: Why is this independent of

the choice of basis of V ?differential to a graded derivation d : Ωk(M,V ) → Ωk+1(M,V ) by

declaring that

d
(
ωi ⊗ ei

)
:= dωi ⊗ ei.

The wedge product requires a little more thought to define, since

this requires us to multiply vectors together. This isn’t possible in an

arbitrary vector space (only in algebras, cf. Definition 19.18). Thus

in general we need to specify a bilinear map. This works as follows:

suppose V, V1, V2 and W are four vector spaces, and assume we are

given a bilinear map β : V1 × V2 → W (equivalently, a linear map

V1 ⊗ V2 → W , cf. Lemma 19.2). Then motivated by Lemma 22.18, we

make the following definition:

Definition 36.4. Let ω ∈ Alth(V, V1) and θ ∈ Altk(V, V2). We define

ω ∧β θ ∈ Alth+k(V,W ) by

(ω∧βθ)(ξ1, . . . , ξh+k) =
1

h!k!

∑
%∈Sh+k

sgn(%)β
(
ω
(
ξ%(1), . . . , ξ%(h)

)
, θ
(
ξ%(h+1), . . . , ξ%(h+k)

))
.

Equivalently we can think of ∧β as defining a map(∧h
V ∗ ⊗ V1

)
×
(∧k

V ∗ ⊗ V2

)
→
(∧h+k

V ∗ ⊗W
)
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If for instance W = V1 = V2 is an algebra (and thus there is natural

algebra multiplication W ⊗W →W ) we can regard the wedge product

as a map (∧h
V ∗ ⊗W

)
×
(∧k

V ∗ ⊗W
)
→
(∧h+k

V ∗ ⊗W
)
,

and in this case we typically omit reference of the map β. Moreover if

we have no convenient map β, we can always take W = V1 ⊗ V2 and

have β be induced from the identity map V1 × V2 → V1 × V2. Thus

there is always a wedge product(∧h
V ∗ ⊗ V1

)
×
(∧k

V ∗ ⊗ V2

)
→
(∧h+k

V ∗ ⊗ V1 ⊗ V2

)
,

Now let us apply this to manifolds: if β : V1 × V2 → W is a bilinear

map then we obtain a map

Ωh(M,V1)× Ωk(M,V2)
∧β−−→ Ωh+k(M,W )

by applying the above construction pointwise:

(ω ∧β θ)p = ωp ∧β θp, p ∈M.

Let (ei) be a basis of V1 and (e j) be a basis of V2. If we write ω =

ωi ⊗ ei and θ = θj ⊗ e′j then from the definition it follows that

ω ∧β θ = ωi ∧ θjβ(ei, e
′
j).

If (fl) is a basis of W then we can write β(ei, e
′
j) = alijfl for real

numbers alij , and thus

ω ∧β θ = alij ω
i ∧ θj fl,

which also proves that ω ∧β θ is smooth (if you were worried). The

following result, whose proof is on Problem Sheet O, shows that the

exterior differential on vector-valued forms is still skew-commutative.

Proposition 36.5. Let M be a smooth manifold, and let V1, V2 and

W be vector spaces. Let ω ∈ Ωh(M,V1) and let θ ∈ Ωk(M,V2), and let

β : V1 × V2 →W be a bilinear map. Then

d(ω ∧β θ) = dω ∧β θ + (−1)hω ∧β dθ.

Let us give an example of how this is useful.

Example 36.6. Let g be a Lie algebra. Then g is in particular a

vector space, and the Lie bracket (v, w) 7→ [v, w] is a bilinear map

g × g → g. Suppose M is a manifold. Given ω ∈ Ωk(M, g) and

θ ∈ Ωs(M, g), we typically use the notation

[ω, θ] := ω ∧β=[·,·] θ.

We claim that this wedge product satisfies the following version of

skew-commutativity:

[ω, θ] = (−1)hk+1[θ, ω]. (36.1)
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To see this, let (ei) be a basis for g. Write ω = ωi ⊗ ei and θ = θj ⊗ ej .
Then

[ω, θ] = ωi ∧ θj [ei, ej ]
= (−1)hk+1θj ∧ ωi[ej , ei]
= (−1)hk+1[θ, ω],

where the (−1)hk came from swapping ωi ∧ θj to θj ∧ ωi and the other

−1 came from [ei, ej ] = −[ej , ei]. In particular, this shows that if

h = sk = 1 then [ω, θ] is symmetric in ω and θ. (This should surprise

you, since the normal Lie bracket is anti-symmetric). In particular, it

is not (!) necessarily true that [ω, ω] = 0 for ω ∈ Ω1(M, g). This will

be important in Lecture 41 (see Theorem 41.6 in particular).

The analogue of Theorem 23.13 holds for d.

Theorem 36.7. Let M be a smooth manifold, ω ∈ Ωk(M,W ) and

X0, . . . Xk ∈ X(M). Then:

dω(X0, . . . , Xk) =

k∑
i=0

(−1)iXi

(
ω(X0, . . . , X̂i, . . . , Xk)

)
+

∑
0≤i<j≤k

(−1)i+jω([Xi, Xj ], X0, . . . X̂i, . . . , X̂j , . . . , Xk).

Proof. The proof is identical to the proof of Theorem 23.13 – the

only difference is that both sides are functions M → V rather than

functions M → R.

Similarly the proof of Lemma 23.4 goes through without any

changes to give:

Lemma 36.8. Let ϕ : M → N be a smooth map and let ω ∈ Ω(N,V ).

Then

ϕ∗(dω) = d(ϕ∗ω).

Let us now take this one step further and look at differential forms

with values in a vector bundle, rather than just a vector space.

Definition 36.9. Let M be a smooth manifold and π : E → M a

vector bundle over M . A differential k form with values in E (or

a bundle-valued form) is a section of the bundle
∧k
T ∗M ⊗ E. As

usual, we denote by Ωk(M,E) the space of such sections.

Thus an element ω ∈ Ωk(M,E) defines for each p ∈ M an alternat-

ing multilinear map

ωp : TpM × · · · × TpM︸ ︷︷ ︸
k copies

→ Ep.

Again, this may seem confusing, but in reality is no more complicated

than the case of a vector-valued form; the only difference is that the

target vector space Ep now also depends on p. If (ei) is a local frame

for E over an open set U then any element ω ∈ Ωk(U,E) can be

written as a sum Warning: Do not confuse Ωk(U,E)

and Γ
(
U,
∧kE)!ω = ωi ⊗ ei

where ωi is a normal differential k-form on U .
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Theorem 36.10 (The Bundle-valued Differential Form Criterion). Let

π : E → M be a vector bundle and suppose U ⊂ M is a non-empty

open set. There is a natural C∞(U)-module isomorphism between

Ωk(U,E) and alternating C∞(U)-multilinear functions

X(U)× · · · × X(U)︸ ︷︷ ︸
k copies

→ Γ(U,E).

This follows in the same way as Theorem 22.15 and Theorem 36.3,

but since this is arguably the hardest of these sort of results, let us

recap the details.

Proof. Take U = M for simplicity. We use the Hom-Gamma Theorem

20.25:

Ωk(M,E) = Γ
(
M,
∧k
T ∗M ⊗ E

)
= Γ

(
Hom

(∧k
TM,E

))
= Hom

(
Γ
(∧k

TM
)
,Γ(E)

)
.

Now the argument used in the proof of Theorem 21.5 (which was

proved as Problem I.4) shows that this latter space can be identified

with alternating C∞(M)-multilinear functions

X(M)× · · · × X(M)︸ ︷︷ ︸
k copies

→ Γ(E).

Alternatively, one could use the alternating version of Proposition

21.14 and Proposition 21.15 to show that

Hom
(

Γ
(∧k

TM
)
,Γ(E)

)
∼= Altk

(
X(M),Γ(E)

)
(this is more efficient, but harder, since X(M) and Γ(E) are infinite-

dimensional vector spaces).

Thus we can think of an element of Ωk(M,E) as a alternating map

that eats vector fields and produces a section of E:

ω(X1, . . . , Xk) ∈ Γ(E).

Here is are two examples:

Examples 36.11.

(i) Let ϕ : M → N be a smooth map. Then Dϕ can be thought of as

an element of Ω1(M,ϕ∗(TN)).

(ii) Let ∇ be a connection on E. Then by Theorem 33.14 the curvature

R∇ is an element of Ω2(M,End(E)).

We now develop a version of the wedge product for bundle-valued

forms. Rather than work in maximal generality, we will give the rel-

evant definitions only for the case we are interested in. Let us say

that a decomposable element of Ωk(U,E) is an element of the form

α = ω ⊗ s where ω ∈ Ωk(U) and s ∈ Γ(U,E).
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Definition 36.12. The space Ω(M,E) is a sheaf of Ω(M)-bimodules

in the sense that there are wedge products

∧ : Ω(M)× Ω(M,E)→ Ω(M,E)

and

∧ : Ω(M,E)× Ω(M)→ Ω(M,E)

which restrict to define maps

Ωh(M)×Ωk(M,E)→ Ωh+k(M,E), Ωk(M,E)×Ωk(M)→ Ωh+k(M,E)

and are compatible in the sense that

(ω ∧ α) ∧ θ = ω ∧ (α ∧ θ), α ∈ Ω(M,E), ω, θ ∈ Ω(M).

Explicitly, these wedge product are defined on decomposable elements

α = ω ⊗ s as follows:

(ω ⊗ s) ∧ θ := (ω ∧ θ)⊗ s.

where wedge product on the right-hand side is normal wedge product,

and similarly

θ ∧ (ω ⊗ s) := (θ ∧ ω)⊗ s,

and then extended by linearity. Just as the wedge product reduces to

multiplication for 0-forms, we define

ω ∧ s = s ∧ ω := ω ⊗ s, ω ∈ Ω(M), s ∈ Ω0(M,E). (36.2)

It follows from the definition that the wedge product is again graded

commutative in the sense that

ω ∧ α = (−1)hkα ∧ ω, ω ∈ ΩhM , α ∈ Ωk(M,E). (36.3)

With all the necessary formalism developed, we can proceed to

heart of today’s lecture. The starting point is the following observa-

tion:

Lemma 36.13. A connection ∇ on E is equivalent to an R-linear local

operator ∇ : Ω0(M,E)→ Ω1(M,E) which satisfies the Leibniz rule

∇(fs) = df ⊗ s+ f ∇s.

Proof. The axioms of a covariant derivative (Definition 31.6) tell us

that we get an R-linear map

∇ : Ω0(M,E)→ Ω1(M,E)

satisfying the Leibniz rule. The proof that ∇ is a local operator is a

standard argument using a bump function: if s|U ≡ 0 and p ∈ U ,

choose an open set V ⊂ U containing p and a bump function χ such

that χ|V ≡ 1 and supp(χ) ⊂ U . Then χs ≡ 0 and dχp = 0 as χ is

constant on a neigbourhood of p, leading to:

0 = ∇(χs)(p)

= dχp ⊗ s(p) + χ(p)(∇s)(p)
= (∇s)(p).
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So far all we have done is added notational complexity. Recall that

the exterior differential d : Ω(M) → Ω(M) is a graded derivation of

degree 1 (Definition 22.24), which extends the operation f 7→ df to

higher differential forms. We now play the same game with connec-

tions.

We can now formulate our main result.

Theorem 36.14. Let π : E → M be a vector bundle with connection

∇. There exists a unique local operator

d∇ : Ω(M,E)→ Ω(M,E)

of degree 1, i.e. that d∇ restricts to define local operators

d∇ : Ωk(M,E)→ Ωr+1(M,E)

such that:

(i) d∇ is a graded derivation with respect to the wedge products from

Definition 36.12, i.e. for ω ∈ Ωk(M) and α ∈ Ωk(M,E) we have

d∇(ω ∧ α) = dω ∧ α+ (−1)kω ∧ d∇α.
d∇(α ∧ ω) = d∇α ∧ ω + (−1)kα ∧ dω.

(36.4)

(ii) d∇ is equal to ∇ on Ω0(M,E): d∇s = ∇s for s ∈ Ω0(M,E).

We call d∇ the exterior covariant differential associated to the

connection ∇ and refer to d∇α as the exterior covariant differential of

α.

The proof of Theorem 36.14 is very similar to the proof of Theorem

23.1. Indeed, if one takes E to be the trivial bundle M×R→ R and ∇
to be the trivial connection then d∇ = d and the proof is of Theorem

36.14 reduces exactly to that of Theorem 23.1. The general case is

only notationally different, and we leave it to the interested reader as

an exercise.

We then have the following analogue of Theorem 23.13, which uses

the Bundle-Valued Differential Form Criterion (Theorem 36.10) to

make sense of its statement.

Theorem 36.15. Let π : E → M be a vector bundle with connection

∇. Let α ∈ Ωk(M,E) and let X0, . . . Xk ∈ X(M). Then:

d∇α(X0, . . . , Xk) =

k∑
i=0

(−1)i∇Xi
(
α(X0, . . . , X̂i, . . . , Xk)

)
+

∑
0≤i<j≤k

(−1)i+jα([Xi, Xj ], X0, . . . X̂i, . . . , X̂j , . . . , Xk).

The proof is by induction on k, and proceeds in exactly the same

was as Theorem 23.13. Similarly we have the following version of

Lemma 23.4:

Lemma 36.16. Let π : E → N be a vector bundle with connection ∇.

Let ϕ : M → N be a smooth map and let α ∈ Ω(N,E). Then

ϕ∗(d∇α) = d∇(ϕ∗α).

that is, ϕ∗ commutes with the exterior covariant differentials.
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On Problem Sheet N you will show:

Proposition 36.17. Let π : E → M be an algebra bundle and let

be a connection on ∇ such that the algebra multiplication β : E × Proposition 34.4 shows that the
bundles End(E) and gl(E) satisfy the

hypotheses of this proposition.
E → E is parallel in the sense that if γ is a curve in M and ρ1, ρ2 are

two parallel sections then β(ρ1, ρ2) is also parallel along γ. Then d∇

satisfies the product rule

d∇
(
β(α1, α2)

)
= β

(
d∇α1, α2

)
+ (−1)kβ

(
α1, d

∇α2

)
,

for α1 ∈ Ωk(M,E) and α2 ∈ Ω(M,E).

Unlike the exterior differential however, the exterior covariant differ-

ential does not necessarily square to zero. For this we need a bit more

formalism.

Recall a decomposable element of Ωk(M,End(E)) is of the form

ω ⊗ Φ where ω ∈ Ωk(M) and Φ ∈ Γ(End(E)). We can therefore extend

Definition 36.12 and define (even) more wedge products.

Definition 36.18. The vector space Ω(M,End(E)) are C∞(M)-

algebras under the multiplication

Ω(M,End(E))× Ω(M,End(E))→ Ω(M,End(E)).

given by

(ω ⊗ Φ) ∧ (θ ⊗Ψ) := (ω ∧ θ)⊗ (Φ ◦Ψ),

Moreover Ω(M,E) is also a left Ω(M,End(E))-module via the wedge

product

∧ : Ω(M,End(E))× Ω(M,E)→ Ω(M,E)

defined on decomposable elements by

(ω ⊗ Φ) ∧ (θ ⊗ s) := (ω ∧ θ)⊗ Φ(s).

This wedge products restrict to a map

Ωh(M,End(E))× Ωk(M,E)→ Ωh+k(M,E).

This wedge product makes Ω(M,E) into a Ω(M,End(E))-Ω(M) bi-

module, in the sense that for Θ ∈ Ω(M,End(E)), α ∈ Ω(M,E) and If the algebraic terminology is unfa-
miliar, just ignore it. Only (36.5) is

important.
ω ∈ Ω(M) one has

(A ∧ α) ∧ ω = A ∧ (α ∧ ω). (36.5)

We are now ready to prove the main result of today’s lecture: the

curvature R∇ is the obstruction to (Ω(M,E), d∇) being a chain com-

plex.

Theorem 36.19. Let π : E → M be a vector bundle with connection

∇. For all α ∈ Ωk(M,E) one has

d∇ ◦ d∇(α) = R∇ ∧ α.

Thus d∇ ◦ d∇ = 0 if and only if ∇ is flat.
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Proof. We first prove the result in the special case k = 0, so that

α = s is just a section of E. Let X,Y ∈ X(M). Then using Theorem

36.15 and Theorem 35.10 we compute:

d∇ ◦ d∇(s)(X,Y ) = ∇X(∇s(Y ))−∇Y (∇s(X))−∇s([X,Y ])

= ∇X∇Y s−∇Y∇Xs−∇[X,Y ]s

= R∇(X,Y )(s),

and hence

d∇ ◦ d∇s = R∇ ∧ s. (36.6)

For the general case it suffices to take α = ω ⊗ s to be a decomposable

element. Then we compute

d∇ ◦ d∇α (36.2)
= d∇ ◦ d∇(ω ∧ s)

(36.4)
= d∇

(
dω ∧ s+ (−1)kω ∧ d∇s

)
= d(dω) ∧ s+ (−1)k+1dω ∧ d∇(s) + (−1)kdω ∧ d∇s+ (−1)2kω ∧

(
d∇ ◦ d∇s

)
(36.6)

= ω ∧ (R∇ ∧ s)
(36.3)

= (R∇ ∧ s) ∧ ω
(36.5)

= R∇ ∧ (s ∧ ω)

(36.3)
= R∇ ∧ (ω ∧ s)

(36.2)
= R∇ ∧ α.

This completes the proof.

We conclude this lecture by stating and proving the Bianchi iden-

tity. As we will see next lecture, this identity is the starting point for

using connections to study de Rham cohomology of a manifold via

characteristic classes.

We denote by

d∇
End

: Ω(M,End(E))→ Ω(M,End(E))

the exterior covariant differential associated to the connection ∇End on

End(E). On Problem Sheet N you will prove:

Proposition 36.20. For Θ ∈ Ωk(M,End(E)) and α ∈ Ω(M,E) one

has

d∇(Θ ∧ α) = d∇
End

Θ ∧ α+ (−1)kΘ ∧ d∇α.

By part (ii) of Examples 36.11 the curvature R∇ of ∇ is an element

of Ω2(M,End(E)), and hence d∇
End

(R∇) ∈ Ω3(M,End(E)). In fact,

this element is always zero.

Theorem 36.21 (The Bianchi Identity). Let π : E → M be a vector

bundle with connection ∇. Then

d∇
End

(R∇) = 0.
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Proof. Let α ∈ Ω(M,E). We compute (d∇)3(α) := d∇ ◦ d∇ ◦ d∇α in

two ways. Firstly, by Theorem 36.19 we have

(d∇)3(α) = (d∇)2
(
d∇α

)
= R∇ ∧ d∇α. (36.7)

Alternatively, using Proposition 36.20 in addition to Theorem 36.19 we

have

(d∇)3(α) = d∇
(
(d∇)2(α)

)
= d∇(R∇ ∧ α)

= d∇
End

(R∇) ∧ α+ (−1)2R∇ ∧ d∇α

= d∇
End

(R∇) ∧ α+R∇ ∧ d∇α.

Comparing this with (36.7) tells us that

R∇ ∧ d∇α = d∇
End

(R∇) ∧ α+R∇ ∧ d∇α,

and hence

d∇
End

(R∇) ∧ α = 0, ∀α ∈ Ω(M,E).

This implies that d∇
End

(R∇) = 0, and thus completes the proof.



Will J. Merry

LECTURE 37

Riemannian Vector Bundles

Next lecture we will introduce characteristic classes of a vector bundle.

In this lecture we motivate their construction by considering a simple

– and ultimately, useless – example. Along the way we introduce Rie-

mannian metrics on vector bundles, whose study we will return to in

Lecture 43.

Suppose π : E →M is a vector bundle and η is a section of the dual

bundle E∗. If α ∈ Ωk(M,E) is an E-valued differential k-form on M ,

then we can feed α to η to obtain a normal differential k-form η(α) ∈
Ωk(M). Explicitly, if α = ω ⊗ s is decomposable then η(α) := η(s)ω.

Lemma 37.1. Suppose π : E → M is a vector bundle with connec-

tion ∇. Suppose η ∈ Γ(E∗) is a section of the dual bundle which

is parallel with respect to the induced connection ∇∗. Then for any

α ∈ Ωk(M,E), we have

d(η(α)) = η
(
d∇α

)
as elements of Ωk+1(M).

Proof. If X0, . . . , Xk are vector fields on M then by Theorem 23.13

d(η(α))(X0, . . . , Xk) =

k∑
i=0

(−1)iXi

(
η(α)(X0, . . . , X̂i, . . . , Xk)

)
+

∑
0≤i<j≤k

(−1)i+jη(α)([Xi, Xj ], X0, . . . X̂i, . . . , X̂j , . . . , Xk).

Using the definition of the induced connection ∇∗, we have i.e. part (ii) of Problem M.3.

Xi

(
η(α)(X0, . . . , X̂i, . . . , Xk)

)
=(∇∗Xiη)

(
α(X0, . . . , X̂i, . . . , Xk)

)
+ η
(
∇Xiα(X0, . . . , X̂i, . . . , Xk)

)
,

and thus by Theorem 36.15 we have

d(η(α))(X0, . . . , Xk) =

k∑
i=0

(−1)i(∇∗Xiη)
(
α(X0, . . . , X̂i, . . . , Xk)

)
+ η
(
d∇α(X0, . . . , Xk)

)
.

If η is parallel then ∇∗η = 0, and thus the result follows.

Now consider the trace operator

tr : Mat(n)→ R

that sends a matrix to its trace. We will show that tr induces a paral-

lel section of the dual bundle to the homomorphism bundle. Recall the

frame bundle Fr(E) associated to E from Definition 17.24. An element

of the fibre Fr(Ep) is a linear isomorphism ` : Rn → Ep.
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Proposition 37.2. Let π : E → M be a vector bundle of rank n

with connection ∇. There is a well-defined section η of the bundle

(End(E))∗ given by the trace:

ηp(A) := tr(`−1
0 ◦A ◦ `0), A ∈ End(Ep), (37.1)

where `0 ∈ Fr(Ep) is any fixed element. Moreover this section η is

parallel with respect to the dual connection on End(E)∗ induced by

the connection ∇End on End(E).

Proof. To prove that η is well defined we observe that if `1 : Rn → Ep

was another element of Fr(Ep) then ` := `−1
0 `1 ∈ GL(n), and

tr(`−1
1 ◦A ◦ `1) = tr(`−1`−1

0 ◦A ◦ `0`)
= tr(`−1

0 ◦A ◦ `0),

since the trace of a matrix is invariant under conjugation by an invert-

ible matrix.

To prove that η is parallel with respect to the dual connection on

(End(E))∗ induced by ∇End, by part (i) of Problem M.3 we need to

show that η is constant along parallel sections of End(E) with re-

spect to ∇End. Fix p ∈ M and let γ : [0, 1] → M be a curve with

γ(0) = p and γ̇(t) 6= 0. Let (ei) be a local frame of E over an open

set U containing p which is parallel along γ (Corollary 32.5), and let

ε : π−1(U) → Rn denote the associated vector bundle chart. Suppose

C ∈ Γγ(End(E)) is parallel with respect to ∇End. Then just as in

(34.6), the curve εγ(t)(C(t)) is constant in t. Unravelling the defini-

tions then gives

ηγ(t)(C(t)) = tr
(
εp ◦ C(0) ◦ ε−1

p

)
,

which thus is constant as required.

From now on by an abuse of notation we will denote the section η

defined in (37.1) also by tr. What have we gained from this construc-

tion?

Corollary 37.3. Let π : E → M be a vector bundle with connection

∇. Then the differential 2-form tr(R∇) is closed, and hence defines a

de Rham cohomology class [tr(R∇)] ∈ H2
dR(M).

Proof. We apply Lemma 37.1 applied with “E” equal to End(E) and

“∇” equal to ∇End. Then using also the Bianchi Identity (Theorem

36.21) we have

d(tr(R∇)) = tr
(
d∇

End

(R∇)
)

= 0.

Thus tr(R∇) is closed, as required.

What is more surprising is that the cohomology class [tr(R∇)] is

actually independent of the choice of connection ∇.

Proposition 37.4. Let π : E → M denote a vector bundle and let ∇0

and ∇1 denote two connections on E. Then as elements of H2
dR(M),

we have

[tr(R∇0)] = [tr(R∇1)].
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Proof. Let pr1 : M × [0, 1] → M denote the first projection, and An alternative approach to this proof

can be found in Problem N.1.consider the pullback bundle pr?1 E over M × [0, 1]. Let ∇i denote the

pullback connection pr∗1∇i. If pr2 : M × [0, 1] → [0, 1] is the second

projection, then

∇ := (1− pr2)∇0 + pr2∇1

is a connection on pr∗1 E. If ιt : M →M×[0, 1] is the map ιt(p) := (p, t)

then

ι?t∇ = (1− t)∇0 + t∇1,

and thus in particular

ι?0∇ = ∇0, ι?1∇ = ∇1.

If R∇ denotes the curvature of ∇ and R∇i denotes the curvature of ∇i
then using Proposition 35.9 and Theorem 35.10 we obtain

tr(R∇0) = ι?0
(
tr(R∇)

)
, tr(R∇1) = ι?1

(
tr(R∇)

)
.

By Proposition 27.4 we obtain

[tr(R∇0)] = ι?0[tr(R∇)] = ι?1[tr(R∇)] = [tr(R∇1)].

This completes the proof.

We have thus shown that the trace of the curvature of a connection

gives rise to a de Rham cohomology class in the base manifold that

depends only on the vector bundle. Amusingly however, this cohomol-

ogy class is not particularly interesting.

Proposition 37.5. Let π : E → M denote a vector bundle. Then

[tr(R∇)] = 0.

One should view Proposition 37.5 as a very special case of the

construction of characteristic classes of vector bundles. The key idea

behind their construction is that we can play the same game with any

“invariant polynomial”, rather than just the trace. More adventurous

choices of polynomial will lead to cohomology classes that are not

necessarily zero, and thus give rise to algebraic invariants of the vector

bundle. We will explore this further next lecture.

The proof of Proposition 37.5 is not particularly hard, but it re-

quires us to introduce another concept, that of a Riemannian metric.

After connections, this is the second most important idea of the entire

course.

Definition 37.6. Let π : E →M be a vector bundle. A Riemannian

metric on E (often shorted to just “a metric on E”) is a section For historical reasons, “g” is the
standard symbol for a metric. This

is slightly unfortunate, as the symbol
g is already somewhat overloaded

(eg. it is also the default letter for an
element in a Lie group.) Nevertheless,
we stick to the established convention.

g ∈ Γ(E∗ ⊗ E∗) with the property that for all p ∈ M , the element

gp ∈ E∗p ⊗E∗p ∼= (E ⊗E)∗|p is an inner product on the vector space Ep.

We call the pair (E, g) a Riemannian vector bundle.

In the special case E = TM , we say that g is a Riemannian met-

ric on M and refer to the pair (M, g) as a Riemannian manifold.

The field of Riemannian geometry is the study of Riemannian metrics

on manifold.
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Warning: Do not confuse a Riemannian metric with a nor-

mal metric in the sense of point-set topology. They are not

the same thing! We will eventually prove that if (M, g) is a

Riemannian manifold then the Riemannian metric g induces

an actual metric dg on M , which moreover induces the given

topology on M .

We will often use the notation

〈u, v〉 := gp(u, v)

to emphasise that gp is an inner product. Often we will omit the sub-

script p and just write 〈u, v〉, and sometimes we will refer to the entire

metric by 〈·, ·〉. Similarly we abbreviate by

‖v‖p :=
√
gp(v, v)

the associated norm on Ep, again sometimes omitting the subscript p.

Definition 37.7. Let π1 : E → M and π2 : F → N be two vector

bundles equipped with Riemmanian metrics gi for i = 1, 2. Suppose

ϕ : M → N is a smooth map and Φ: E → F is a vector bundle

morphism along ϕ:

E F

M N

Φ

π1 π2

ϕ

We say that Φ is an isometric vector bundle morphism if

g1|p(u, v) = g2|ϕ(p)(Φ(u),Φ(v)), ∀ p ∈M, u, v ∈ Ep.

As with connections, every vector bundle admits a Riemannian

metric.

Proposition 37.8. Every vector bundle π : E →M admits a Rieman-

nian metric.

Proof. This is a standard partition of unity argument. Suppose E has

rank n. Let {Ua | a ∈ A} be an open cover of M such that there exist

a vector bundle chart εa : π−1(Ua) → Rn for each a ∈ A. Let 〈·, ·〉
denote the standard Euclidean inner product on Rn, and define for

p ∈ Ua
ga|p(u, v) := 〈εa|p(u), εa|p(v)〉

Then ga is a Riemannian metric on the trivial bundle π−1(Ua) →
Ua. To globalise this, let {κa | a ∈ A} denote a partition of unity

subordinate to {Ua | a ∈ A} and extend the local section κaga of

E∗ ⊗ E∗ to be defined on all of M by setting it to be zero outside of

Ua. Then define

g :=
∑
a∈A

κaga ∈ Γ(E∗ ⊗ E∗).

This is a Riemannian metric on E as the sum is finite at every point.
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We also have:

Lemma 37.9. Let π : E → M be a vector bundle and suppose g is a

Riemannian metric on E. Then around any point p ∈M there exists a

local frame (ei) for E which is orthonormal with respect to g.

Proof. Apply the Gram-Schmidt process to an arbitrary local frame.

A corollary of this is that we can always reduce the structure group cf. Remark 16.10.

of a vector bundle to the orthogonal group.

Corollary 37.10. If π : E →M is a vector bundle of rank n then the This was originally Problem G.5.

structure group G of E may be reduced to O(n) ⊂ GL(n).

Proof. Lemma 37.9 furnishes the necessary vector bundle charts.

Now we relate connections to metrics.

Definition 37.11. Let (E, g) be a Riemannian vector bundle. A

connection ∇ on E is said to be compatible with g if g is a parallel

section with respect to the induced connection on E∗ ⊗ E∗.

If g is understood we simply say that ∇ is a metric connection.

Proposition 37.12. Let (E, g = 〈·, ·〉) be a Riemannian vector bundle

over M . A connection ∇ on E is a metric connection if and only if The equation (37.2) is known as the

Ricci Identity.

X〈r, s〉 = 〈∇Xr, s〉+ 〈r,∇Xs〉, ∀X ∈ X(M), r, s ∈ Γ(E). (37.2)

Proof. Denote the induced connection on E∗ ⊗ E∗ (also) by ∇. By

Problem M.4 we have for X ∈ X(M) and r, s ∈ Γ(E) that

(∇Xg)(r, s) = X〈r, s〉 − 〈∇Xr, s〉 − 〈r,∇Xs〉.

Thus ∇Xg = 0 if and only if (37.2) holds.

The Ricci Identity also holds for the pullback of a metric connec-

tion.

Corollary 37.13. Let π : E → N be a vector bundle with Rieman-

nian metric g = 〈·, ·〉 and let ∇ denote a connection on E which is

compatible with respect to g. Suppose ϕ : M → N is a smooth map.

Then the pullback connection satisfies the Ricci identity too: for every

X ∈ X(M) and r, s ∈ Γϕ(E) one has

X〈r, s〉 = 〈∇ϕXr, s〉+ 〈r,∇ϕXs〉,

where both sides are smooth functions on M .

Proof. Apply the chain rule (31.9) for covariant derivative operators.

On Problem Sheet N you will prove that if ∇ is a Riemannian

connection then Hol∇(p) ⊂ O(Ep, gp) ⊂ GL(Ep), for every x ∈ M ,

where O(Ep, gp) denotes the orthogonal transformations with respect
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to the inner product gp. We denote by o(Ep, gp) ⊆ gl(Ep) its Lie

algebra and by

o(g) =
⊔
p∈M

o(Ep, gp).

This is an algebra subbundle of gl(E), which we call the orthogonal Exercise: Check this!

algebra bundle.

Proposition 37.14. Let (E, g = 〈·, ·〉) be a Riemannian vector bundle

over M . Then metric connections exist.

Proof. The argument is again via a partition of unity. Suppose E has

rank n. Let {Ua | a ∈ A} be an open cover of M such that there exist

a orthonormal frame (eai ) for E over Ua. Define a covariant derivative

operator on the trivial bundle π−1(Ua)→ Ua by

∇aXs :=

k∑
i=1

X〈eai , s〉eai .

Now let {κa | a ∈ A} denote a partition of unity subordinate to

{Ua | a ∈ A} and extend the local section κa∇a to be defined on all of

M by setting it to be zero outside of Ua. Then define

∇ :=
∑
a∈A

κa∇a.

This is a covariant derivative operator on M . Moreover we claim that If the associated distribution to

∇a is ∆a then the distribution ∆

constructed in Step 2 of Theorem 28.6
has its associated covariant derivative

equal to ∇.

∇ is Riemannian: indeed if X ∈ X(M) and r, s ∈ Γ(E) then

X〈r, s〉 =
∑
a∈A

n∑
i=1

κaX
(
〈r, eai 〉〈eai , s〉

)
=
∑
a∈A

κa

(
〈∇aXr, s〉+ 〈r,∇aXs〉

)
= 〈∇Xr, s〉+ 〈r,∇Xs〉,

where as usual the interchange of summation signs is justified as the

sum is locally finite.

We now prove that the curvature tensor of a metric connection is

skew-symmetric.

Proposition 37.15. Let (E, g) be a Riemannian vector bundle over

M , and let ∇ be a metric connection. Then for all X,Y ∈ X(M) and

r, s ∈ Γ(E), one has

〈R∇(X,Y )(r), s〉+ 〈r,R∇(X,Y )(s)〉 = 0.

Proof. It is sufficient to prove the result in the case [X,Y ] = 0 since In fact, by Problem D.4 it suffices to
prove the result in the (even more)

special case where X = ∂
∂xi

and

Y = ∂
∂xj

.

R∇ is a point operator. Let s ∈ Γ(E). Then by Theorem 35.10 and

the Ricci Identity (37.2), we have

〈R∇(X,Y )(s), s〉 = 〈∇X∇Y s, s〉 − 〈∇Y∇Xs, s〉
= X〈∇Y s, s〉 − 〈∇Y s,∇Xs〉 − Y 〈∇Xs, s〉+ 〈∇Xs,∇Y s〉

=
1

2
(XY 〈s, s〉 − Y X〈s, s〉)

=
1

2
[X,Y ]〈s, s〉

= 0.
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This completes the proof.

Corollary 37.16. Let (E, g) be a Riemannian vector bundle over

M , and let ∇ be a metric connection. Then for all X,Y ∈ X(M), the

curvature R∇(X,Y ) belongs to the orthogonal algebra bundle o(g).

Proof. Proposition 37.15 shows us that R∇(ξ, ζ) ∈ o(Ep, gp) for all

p ∈M and ξ, ζ ∈ TpM .

We conclude this lecture by using Corollary 37.16 to prove Proposi-

tion 37.5.

Proof of Proposition 37.5. It suffices to find a single connection for

which [tr(R∇)] = 0. Let g denote any Riemannian metric on E and let

∇ denote any metric connection. Then Proposition 37.15 shows that

R∇(X,Y ) is skew-symmetric and hence has trace zero.



Will J. Merry

LECTURE 38

Characteristic Classes

In this lecture we construct the characteristic classes of a vector

bundle in generality. The formalism is a little daunting, so you are

urged to keep in mind the example of the trace function from the

last lecture. We begin as usual at the level of linear algebra. Let

R[X1, . . . ,Xn] denote the R-algebra of polynomials in n indetermi-

nates Xi. A polynomial p ∈ R[X1, . . . ,Xn] is said to be homogeneous

of degree k if we can write

p(X1, . . . ,Xn) =
∑

ci1···ikXi1 · · ·Xik .

where the sum is over all nk tuples (i1, . . . , ik) such that 1 ≤ ij ≤ n Warning: Do not confuse this with

requiring the polynomial p itself to be

a symmetric polynomial!
for each ij . We may without loss of generality always assume that the

coefficients ci1···ik are symmetric in the indices i1, . . . , ik.

Definition 38.1. Let V be a vector space of dimension n. A homo-

geneous polynomial of degree k on V is a map This notation “q” clashes with our

previous use of q in Lecture 25 to

denote a singular chain (Definition
25.13). Luckily, there is no overlap

in the mathematical content, and
hence there should be no danger of

confusion.

q : V → R

such that for every basis (ei) of the dual space V ∗, there exists a

unique homogeneous p ∈ R[X1, . . . ,Xn] such that

q(v) = p(e1, . . . , ek)(v) =
∑

ci1···ike
i1(v) · · · eik(v). (38.1)

It is easy to see that this property is independent of the choice of

basis in the sense that we could replace “for every basis” with “there

exists a basis”. Moreover any polynomial is obviously smooth.

Definition 38.2. Let V be a vector space. We let Pk(V ) denote

the set of all homogeneous polynomials of degree k, and P(V ) =⊕
k≥0 Pk(V ). Then P(V ) is an algebra under the usual pointwise

product of functions.

Definition 38.3. Let V be a vector space, and suppose q ∈ Pk(V ).

The polarisation of q is the tensor polar(q) ∈ T 0,k(V ) ∼= Multk,0(V )

(cf. Proposition 19.8) defined by

polar(q) =
∑

ci1···ike
i1 ⊗ · · · ⊗ eik .

where (ei) is some basis of V ∗ and the coefficients ci1···ik are deter-

mined by (38.1).

As above, it is easy to see that definition of polar(q) does not de-

pend on the choice of basis (ei) of V ∗. Since we assumed that the

original coefficients ci1···ik were symmetric in the indices ij , the tensor

polar(q) is actually a symmetric tensor in the following sense.

Last modified: July 17, 2021.
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Definition 38.4. Let V be a vector space. A tensor S ∈ T 0,kV is said

to be symmetric if we can write

S =
∑

ci1···ike
i1 ⊗ · · · ⊗ eik

for some basis (ei) such that the coefficients ci1···ik are symmetric in

the indices i1, . . . , ik.

In fact, any such symmetric tensor is the polarisation of a homoge-

neous polynomial, i.e. the map

polar : P(V )→ {symmetric tensors}.

is a bijection. An explicit inverse is given by

polar−1(S)(v) := S(v, . . . , v).

Definition 38.5. Let G be a Lie group with Lie algebra g. A homo-

geneous polynomial q : g→ R is said to be invariant if

q(Adg(ξ)) = q(ξ), ∀ g ∈ G, ξ ∈ g,

where Adg : g → g was defined in Definition 13.16. We denote by

Pinv(g) ⊂ P (g) the subalgebra of all invariant polynomials.

In this lecture we are concerned only with characteristic classes On Problem Sheet O you are asked

to develop the theory of characteristic

classes for an arbitrary principal
G-bundle. This theory requires the

general form of Definition 38.5.

on vector bundles, and hence it is enough to restrict to the case G =

GL(n). In this case the adjoint action on gl(n) is given by conjugation:

AdA : gl(n)→ gl(n), AdA(B) = ABA−1.

and thus a polynomial q : gl(n)→ R is invariant if

q(ABA−1) = q(B), ∀A ∈ GL(n), B ∈ gl(n).

We abbreviate

Pinv(n) := Pinv(gl(n)).

The following lemma is elementary linear algebra.

Lemma 38.6. The coefficients qk of the characteristic polynomial

det(tI +A) =

n∑
k=0

qk(A)tn−k, A ∈ gl(n), t ∈ R (38.2)

are invariant polynomials of degree k on gl(n). In particular, the trace

and determinant are invariant polynomials:

1 = q0(A), trA = q1(A), detA = qk(A)

In fact, polynomials of this form generate the entire algebra Pinv(n).

This is a classical result which goes by the somewhat flamboyant

name:

Theorem 38.7 (Fundamental Theorem on Symmetric Polynomials).

The space Pinv(n) is generated as an R-algebra by the coefficients qi
of the characteristic polynomial (38.2).
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Theorem 38.7 is not hard to prove. However it has nothing to do

with Differential Geometry and therefore we will omit it.

Definition 38.8. Let G be a Lie group with Lie algebra g. We say a

symmetric tensor S ∈ S0,kg is invariant if

S(Adg(ξ1), . . . ,Adg(ξk)) = S(ξ1, . . . , ξk)

for all g ∈ G and ξi ∈ g.

It follows readily from the definition that a symmetric tensor S =

polar(q) is invariant if and only if q is an invariant polynomial on g.

Let us now proceed to vector bundles. The following lemma is the

analogue of Proposition 37.2 in this new more complicated setting.

Lemma 38.9. Let π : E → M be a vector bundle of rank n with

connection ∇, and let q ∈ Pinv(n) denote an invariant polynomial

of degree k. Then q induces a parallel section Q of the dual bundle

Endk(E)∗.

Proof. Let S = polar(q) denote the polarisation of q. Fix p ∈ M and

choose `0 ∈ Fr(Ep). We define

Qp(A1 ⊗ · · · ⊗Ak) := S
(
`−1
0 ◦A1 ◦ `0, . . . , `−1

0 ◦Ak ◦ `0
)

for Ai ∈ gl(Ep). This definition is independent of the choice of F ,

since if `1 was another element of Fr(Ep) then ` := `−1
0 `1 ∈ GL(n), and

S
(
`−1
1 ◦A1 ◦ `1, . . . , `−1

1 ◦Ak ◦ `1
)

= S
(
`−1`−1

0 ◦A1 ◦ `0`, . . . , `−1`−1
0 ◦Ak ◦ `0`

)
= S

(
Ad`(`

−1
0 ◦A1 ◦ `0), . . . ,Ad`(`

−1
0 ◦Ak ◦ `0)

)
= S

(
`−1
0 ◦A1 ◦ `0, . . . , `−1

0 ◦Ak ◦ `0
)

since S is invariant. The proof that Q is parallel is identical to the

proof of Proposition 37.2.

Let us now consider differential forms with values in Endk(E). The

tensor product gives us another way to multiply such forms together:

Definition 38.10. Let Θ ∈ Ωh(M,Endk(E)) and Υ ∈ Ωl(M,Endj(E)).

We define an element Θ ⊗ Υ ∈ Ωh+l(M,Endk+r(E)) by wedging

together the Ω(M) factors and tensoring the End(E) factors. Thus for

decomposable elements

Θ = ω ⊗
(
Φ1 ⊗ · · · ⊗ Φk

)
, Υ = θ ⊗ (Ψ1 ⊗ · · · ⊗Ψr),

where ω ∈ Ωh(M), θ ∈ Ωl(M) and Θi,Ψj ∈ Γ(End(E)), one has

Θ⊗Υ := (ω ∧ θ)⊗
(
Φ1 ⊗ · · · ⊗ Φk ⊗Ψ1 ⊗ · · · ⊗Ψr).

Just as in the discussion before Lemma 37.1, if we are given a sec-

tion η of the dual bundle Endk(E)∗ and a bundle-valued differential

form Θ ∈ Ω(M,Endk(E)), we can feed Θ to η to obtain a normal

differential form η(Θ) of the same degree. We then have the following

generalisation of Lemma 37.1.
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Lemma 38.11. Suppose π : E → M is a vector bundle of rank n with

connection ∇, and suppose q ∈ Pinv(n) is an invariant polynomial of

degree k. Let Q denote the induced parallel section of the dual bundle

Endk(E)∗. Suppose Θi ∈ Ωhi(M,End(E)) for i = 1, . . . , k. Then

denoting by ∇End the induced connection on End(E), we have

d
(
Q(Θ1⊗· · ·⊗Θk)

)
= Q

 k∑
j=1

(−1)h1+···+hj−1Θ1 ⊗ · · · ⊗ d∇
End

Θj ⊗ · · · ⊗Θk

 .

Proof. Use Proposition 36.17 together with the argument from the

proof of Lemma 37.1.

The wedge product on differential forms is also well defined on the

level of de Rham cohomology.

Definition 38.12. Let M be a smooth manifold. If [ω] ∈ Hh
dR(M)

and [θ] ∈ Hk
dR(M) are two de Rham cohomology classes represented by

closed forms ω and θ respectively, then we define

[ω] ∧ [θ] := [ω ∧ θ] ∈ Hh+k
dR (M).

This is well defined as (a) the (h + k)-form ω ∧ θ is closed, since

d(ω ∧ θ) = dω ∧ θ + (−1)kω ∧ dθ = 0, and (b) [ω ∧ θ] is independent of

the choice of representatives ω and θ, since if ω1 and θ1 were two more

representatives (meaning that ω − ω1 and θ − θ1 are both exact) then

the same formula shows that ω ∧ θ − ω1 ∧ θ1 is exact.

We are now ready to state and prove our main result.

Theorem 38.13 (The Chern-Weil Theorem). Let π : E → M denote a

vector bundle of rank n and let q ∈Pinv(n) have degree k. Then:

(i) If ∇ is a connection on E and Q is the induced parallel section of

Endk(E)∗ from Lemma 38.9 then the 2k-form

q(∇) := Q

R∇ ⊗ · · · ⊗R∇︸ ︷︷ ︸
k copies


is closed.

(ii) The cohomology class [q(∇)] ∈ H2k
dR(M) is independent of ∇.

(iii) The map Here “CW” stands for “Chern-Weil”

(don’t confuse this with a CW com-
plex in algebraic topology!)

CWE : Pinv(n)→ HdR(M)

given by

CWE(q) := [q(∇)]

is an algebra homomorphism.

Proof. The proof of (i) is the same as Corollary 37.3, and uses the

Bianchi Identity (Theorem 36.21) and Lemma 38.11:

d
(
Q(R∇ ⊗ · · · ⊗R∇)

)
= Q

∑
i

(−1)2+···+2R∇ ⊗ · · · ⊗ d∇
End

(R∇)︸ ︷︷ ︸
=0

⊗ · · · ⊗R∇


= Q
(
R∇ ⊗ · · · ⊗ 0⊗ · · · ⊗R∇

)
= 0.
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The proof of (ii) is identical to that of Proposition 37.4: using the

notation from that proof one has

q(∇0) = ι∗0
(
q(∇)

)
, q(∇1) = ι∗1

(
q(∇)

)
,

and hence by Proposition 27.4 again

[q(∇0)] = ι∗0[q(∇)] = ι∗1[q(∇)] = [q(∇1)].

The proof of (iii) is on Problem Sheet N.

We now prove that CW behaves nicely with respect to pullbacks.

Proposition 38.14. Let π : E → N denote a vector bundle of rank n

and let ϕ : M → N denote a smooth map. Then the following diagram

commutes:
HdR(N)

Pinv(n)

HdR(M)

ϕ∗

CWE

CWϕ∗E

Proof. This follows from the equality Rϕ
∗∇ = ϕ∗R∇, which in turn

follows from Proposition 35.9.

Definition 38.15. Let π : E → M be a vector bundle of rank n.

We call an element CWE(q) ∈ HdR(M) a characteristic class of

E. The map CWE : Pinv(n) → HdR(M) is called the Chern-Weil

homomorphism.

It follows from Proposition 38.14 that isomorphic vector bundles

have the same characteristic classes. Turning this on its head, if E and

F are any two vector bundles, then in order to show that E and F are

not isomorphic, it suffices to find a single characteristic class which

takes different values on E and F .

The following generalisation of Proposition 37.5 is on Problem

Sheet N.

Proposition 38.16. If q ∈ Pinv(n) is an invariant homogeneous

polynomial of odd degree 2k + 1 then CWE(q) = 0 for any vector

bundle of rank n.

Combining this with Theorem 38.7 tells us that the ring of charac-

teristic classes on M is generated by the coefficients q2k of even degree

of the characteristic polynomial (38.2). This motivates the following

definition.

Definition 38.17. Let π : E → M be a vector bundle. We define the

kth Pontryagin class of E to be

pk(E) :=

[
q2k

(
i

2π
∇
)]
∈ H4k

dR(M).
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The factor of i
2π is not too important, it is just there to make cer- Moreover since q2k is homogeneous of

degree 2k, the factor of i disappears

when fed to q2k
tain other formulae prettier. Note pk(E) = 0 if k >

⌊
dimM

4

⌋
. It is also

formally useful to define p0(E) := 1, where 1 ∈ H0
dR(M) = R is the

cohomology class containing the constant function 1.

Proposition 38.18 (The Whitney Product Formula). If E and F are For those of you who are familiar with

Algebraic Topology: the statement
would be more complicated if one

worked with (singular) cohomology

with coefficients in Z, since then one
would need to worry about 2-torsion

elements.

vector bundles over M then

pk(E ⊕ F ) =

k∑
i=0

pi(E) ∧ pk−i(F ).

We conclude this lecture with a sample application.

Proposition 38.19. Suppose M is a compact manifold of dimension

m which can be embedded in Rm+1. Then pk(TM) = 0 for k > 0.

Proof. If M embeds in Rm+1 then the normal bundle Norm(M)

from Definition 7.7 is a one-dimensional vector bundle and hence has

pk(Norm(M)) = 0 for k > 0. We have a vector bundle isomorphism:

TRm+1|M ∼= TM ⊕Norm(M).

Proposition 38.14 applied to the embedding M ↪→ Rm+1 tells us that

pk(TRm+1|M ) = 0 for k > 0. Thus the Whitney Product Formula

(Proposition 38.18) implies that pk(TM) = 0 for k > 0. This com-

pletes the proof.

Of course, the usefulness of Proposition 38.19 depends on our abil-

ity to compute the Pontryagin classes! But this is a topic best suited

for a course on Algebraic Topology. We just state here one result.

Corollary 38.20. CP 2 does not embed in R5.

Proof. We can think of CP 2 as a compact manifold of (real) dimen-

sion four. One can show that the class p1(TCP 2) ∈ H4
dR(CP 2) is of

the form 3c2, where c ∈ H2
dR(CP 2) is a generator (and thus in particu-

lar is non-zero).



Will J. Merry

LECTURE 39

Connections on Principal Bundles

In this lecture we return to principal bundles. We define connections

on principal bundles, and relate them to connections on associated

vector bundles. We begin with some generalities concerning differential

forms on principal bundles and their associated bundles.

Let π : P → M be a principal G-bundle, and suppose σ is a repre-

sentation of G on a vector space V . Abbreviate by E = P ×G V the In Theorem 18.3 we restricted to

faithful representations. This however
was not used anywhere in the proof

(cf. Remark 18.2). Throughout

our treatment of connections on
principal bundles (Lectures 39–42),

it is convenient not to impose this

restriction.

associated vector bundle over M (Corollary 18.5). Using the formalism

from Lecture 36, we are interested in the relationship between

Ωk(P, V ), i.e. V vector-valued differential forms on P ,

Ωk(M,E), i.e. E bundle-valued differential forms on M.

We construct a subspace ΩkG(P, V ) ⊂ Ωk(P, V ) consisting of horizontal

equivariant forms. Then we will prove that ΩkG(P, V ) ∼= Ωk(M,E).

We begin with the following very general definition.

Definition 39.1. A differential form ω ∈ Ωk(P, V ) is said to be

horizontal if ω vanishes whenever any of its variables is a vertical

vector. If k = 0, we declare all forms to be horizontal.

Let τ denote the principal bundle action of G on P . The next defi-

nition is the differential form version of Definition 12.16.

Definition 39.2. Let ω ∈ Ωk(P, V ) denote an V -valued form. We say

that ω is (σ, τ)-equivariant if The reason for the g−1 is that σ is a

left-action and τ is a right action.

τ∗gω = σg−1ω, ∀ g ∈ G.

Explicitly, this means that for any u ∈ P and ζ1, . . . , ζk ∈ TuP ,

(τ∗gω)u(ζ1, . . . , ζk) = σg−1(ωu(ζ1, . . . , ζk)).

When there is no danger of confusion, we will simply “equivariant”

rather than (σ, τ)-equivariant.

We set:

ΩkG(P, V ) :=
{
ω ∈ Ωk(P, V ) | ω is horizontal and equivariant

}
.

Let us now explain how an element ω ∈ ΩkG(P, V ) gives rise to an el-

ement qω ∈ Ωk(M,E). Fix p ∈ M and ξ1, . . . , ξk ∈ TpM . Choose any

point u ∈ Pp, and choose any vectors ζi ∈ TuP such that Dπ(u)ζi = ξi

(such vectors exist as π is a submersion). Then ωu(ζ1, . . . , ζk) belongs

to V . As in the proof of Theorem 18.3, we denote by ψu : V → Eπ(u)

the map v 7→ [u, v]. This map is a linear isomorphism (cf. the para- Recall an element of E is an equiva-

lence class [u, v], where the equiv-
alence relation is (τg(u), v) ∼
(u, σg(v)).

graph before Corollary 18.5). We apply ψu to ωu(ζ1, . . . , ζk) to get an

element of Ep, which we denote by qωp(ξ1, . . . , ξk):

qωp(ξ1, . . . , ξk) := ψu
(
ωu(ζ1, . . . , ζk)

)
.
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This definition involved several choices, so we must prove that qω is

well defined.

Theorem 39.3. If ω ∈ ΩkG(P, V ) then qω is a well-defined element of

Ωk(M,E). Moreover the map

ΩkG(P, V ) 7→ Ωk(M,E), ω 7→ qω

is a linear isomorphism.

Proof. We prove the result in four steps.

1. To show that qω is well defined we must check the value of

ψu(ωu(ζ1, . . . , ζk)) does not depend on the choice of u ∈ Pp and the

choice of ζi ∈ TuP such that Dπ(u)ζi = ξi. In this step we deal with

the ζi. If ηi was another tangent vector such that Dπ(u)ηi = ξi then

ηi − ζi is a vertical vector. Since ω is horizontal and k-linear we have

ωu(ζ1, . . . , ζk) = ωu(ζ1 − η1 + η1, . . . , ζk − ηk + ηk)

= ωu(η1 + vertical, . . . , ηk + vertical)

= ωu(η1, . . . , ηk).

2. Now let us deal with the choice of u. Suppose instead we choose Recall the orbits of τ are exactly the
fibres of P .τg(u). Since π ◦ τg = π, we have

Dπ(τg(u)) ◦Dτg(u)ζi = Dπ(u)ζi = ξi, (39.1)

so that Dτg(u)ζi ∈ Tτg(u)P is a tangent vector that maps onto ξi.

Thus it suffices to show that

ψu
(
ωu(ζ1, . . . , ζk)

)
= ψτg(u)

(
ωτg(u)

(
Dτg(u)ζ1, . . . , Dτg(u)ζk

))
. (39.2)

By equivariance, we have

ωτg(u)

(
Dτg(u)ζ1, . . . , Dτg(u)ζk

)
= (τ∗gω)u(ζ1, . . . , ζk)

= σg−1(ωu(ζ1, . . . , ζk)),

Thus to complete the proof of (39.2) we need only observe that:

ψτg(u) = ψu ◦ σg, (39.3)

which follows directly from the definition:

ψτg(u)(v) = [τg(u), v]

= [u, σg(v)]

= ψu(σg(v)).

3. We now know that qω is well defined. To complete the proof, we

build an inverse. Suppose α ∈ Ωk(M,E) is a bundle-valued form on

M . Define α̂ ∈ Ωk(P, V ) by

α̂u(ζ1, . . . , ζk) := ψ−1
u

(
απ(u)

(
Dπ(u)ζ1, . . . , Dπ(u)ζk

))
.
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It is obvious that α̂ is horizontal, so let us check that α̂ is equivariant.

To see this we argue as follows:(
τ∗g α̂

)
u
(ζ1, . . . , ζk) = α̂τg(u)

(
Dτg(u)ζ1, . . . , Dτg(u)ζk

)
= ψ−1

τg(u)

(
αp
(
Dπ(τg(u)) ◦Dτg(u)ζ1, . . . , Dπ(τg(u)) ◦Dτg(u)ζk

))
= σg−1 ◦ ψ−1

u

(
αp
(
Dπ(u)ζ1, . . . , Dπ(u)ζk

))
= σg−1

(
α̂u(ζ1, . . . , ζk)

)
.

where the penultimate equality used (39.1) and (39.3).

4. It is clear that from the definitions that

qα̂ = α, q̂ω = ω,

and thus the proof is complete.

Let us briefly consider the case k = 0. Every zero-form is vacuously

horizontal, and the equivariance condition for a function f : P → V

becomes

f(τg(u)) = σg−1(f(u)), ∀u ∈ P, g ∈ G. (39.4)

Meanwhile Ω0(M,E) = Γ(E). This proves:

Corollary 39.4. Let P be a principal G bundle over M and let

E = P ×G V denote an associated bundle. Then there is a one-to-one

correspondence between Γ(E) and functions f : P → V satisfying

(39.4). Explicitly, given f satisfying (39.4) we define s : M → E via

s(p) := ψu(f(u)), where u is any point in Pp. Conversely, given a

section s, we define f : P → V by f(u) = ψ−1
u (s(π(u))).

Remark 39.5. Let E be a vector bundle of rank n. Corollary 39.4

tells us that section s of E can be identified with an equivariant func-

tion f : Fr(E)→ Rn.

Now let us move onto connections on principal bundles. Since a

principal bundle is in particular a fibre bundle, we have already de-

fined preconnections on principal bundles. Just as with vector bundles,

a connection on a principal bundle is a preconnection that satisfies an

additional condition.

Definition 39.6. Let π : P → M be a principal G-bundle. Let τ

denote the principal bundle action of G on P . A connection on P is

a preconnection ∆ which satisfies

Dτg(u)(∆u) = ∆τg(u), ∀u ∈ P, g ∈ G. (39.5)

Equation (39.5) is the natural analogue of (28.3) for connections on

vector bundles.

As before, given a connection ∆ we denote by

ζ = ζh + ζv

the horizontal-vertical splitting of a tangent vector ζ ∈ TP . The

condition (39.5) implies that

Dτg(u)ζh =
(
Dτg(u)ζ

)h
, ∀ ζ ∈ TuP, g ∈ G. (39.6)
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We will shortly investigate the relationship between connections on

principal bundles and connections on vector bundles. Before doing so,

however, we look at parallel transport systems in principal bundles.

The following definition is easier to remember if you follow the general

mantra that you simply take the vector bundle version and replace

“linear” with “equivariant” at every opportunity.

Definition 39.7. Let π : P →M be a principal G-bundle. A parallel

transport system P on P assigns to every point u ∈ P and every

curve γ : [a, b] → M with γ(a) = π(u), a unique section 𝕡γ;u ∈ Γγ(E)

with initial condition u, i.e. such that 𝕡γ;u (a) = u. One calls 𝕡γ;u

the parallel lift of γ starting at u. This association should satisfy the

following five axioms:

(i) (Equivariance): For every smooth curve γ : [a, b]→M the map

Pγ : Pγ(a) → Pγ(b), Pγ(u) := 𝕡γ;u(b)

is a diffeomorphism which is (τ, τ)-equivariant with respect to the

G-action:

Pγ(τg(u)) = τg
(
Pγ(u)

)
Moreover

P−1
γ = Pγ−

where γ− : [a, b]→M is the reverse curve t 7→ γ(a− t+ b).

(ii) (Concatenation): If γ : [a, b]→ M is a smooth path and c ∈ (a, b),

then if we abbreviate

γ1 := γ|[a,c], γ2 := γ|[c,b], w :=𝕡γ;u(c),

then

𝕡γ;u(t) =

𝕡γ1;u(t), t ∈ [a, c],

𝕡γ2;w(t), t ∈ [c, b].

This implies that

Pγ = Pγ2 ◦ Pγ1 .

(iii) (Independence of parametrisation): If γ : [a, b] → M is a

smooth curve and h : [a1, b1] → [a, b] is a diffeomorphism such that

h(a1) = a and h(b1) = b then for every point u ∈ Pγ(a) and every

t ∈ [a1, b1], we have

𝕡γ◦h;u(t) =𝕡γ;u(h(t)).

(iv) (Smooth dependence on initial conditions): The section 𝕡γ;u

depends smoothly on both γ and u.

(v) (Initial uniqueness): Suppose γ, δ : [a, b] → M are two curves

such that γ(a) = δ(a) and γ̇(a) = δ̇(a). Then for each u ∈ Pγ(a), the

two curves 𝕡γ;u and 𝕡δ;u have the same initial tangent vector:

𝕡̇γ;u(a) = 𝕡̇δ;u(a)
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As you can guess, connections on principal bundles are equivalent

to parallel transport systems.

Theorem 39.8. Let π : P → M be a principal G-bundle. Then a

connection on P (in the sense of Definition 39.6) determines and is

uniquely determined by a parallel transport system on P (in the sense

of Definition 39.7).

The proof of Theorem 39.8 proceeds analogously to Theorem 30.1

and Theorem 30.2, and to avoid being repetitive, we omit the details.

Instead let us now explain how connections on principal bundles are

related to connections on vector bundles.

Theorem 39.9. Let π : P → M be a principal G-bundle, and suppose

σ is a representation of G on a vector space V . Set E = P ×G V . A

connection ∆ on P (in the principal bundle sense) induces a connec-

tion ∆E on E (in the vector bundle sense).

In the proof we denote by ℘ : P × V → E the map (u, v) 7→ [u, v].

This is also a principal G-bundle by part (ii) of Theorem 18.3.

Proof. Although not strictly necessary, we will give three proofs,

one from the point of view of parallel transport, one from the point

of view of distributions, and one from the point of view of covariant

derivatives.

• Proof using parallel transport: Let γ : [0, 1]→M be a smooth curve

in M , and suppose ρ ∈ Γγ(P ) is a section along γ. Then for any

fixed v ∈ V , t 7→ ℘(ρ(t), v) is a section of E along γ (not every

section of E along γ is of this form though). We define a parallel

transport system PE on E by declaring that a section ρ̃ of E along

γ is parallel if and only if ρ̃ = ℘(ρ, v) for ρ a parallel section of P

along γ. In other words:

PEγ [u, v] := [Pγ(u), v] .

This is well defined because Pγ is (τ, τ)-equivariant. Indeed, if

(u1, v1) is another representative of [u, v], then there exists g ∈ G
such that u1 = τg(u) and v1 = σg−1(v). Then

[Pγ(u1), v1] =
[
Pγ(τg(u)), σg−1(v)

]
=
[
τg(Pγ(u)), σg−1(v)

]
= [Pγ(u), v] .

All the axioms for PE follow from those of P. For instance, to see

that PEγ is a linear map we observe that for c ∈ R and v, w ∈ V :

PEγ
(
[u, v] + c[u,w]

)
= PEγ [u, v + cw]

= [Pγ(u), v + cw]

= [Pγ(u), v] + c [Pγ(u), w]

= PEγ [u, v] + cPEγ [u,w].
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• Proof using distributions: Alternatively, in terms of distributions,

we define

∆E |[u,v] := D℘(u, v)
(
∆u × {0}

)
.

It is clear this defines a preconnection on E. Let µc : E → E denote

the scalar multiplication µc[u, v] := [u, cv]. Then

µc ◦ ℘(u, v) = [u, cv] = ℘(u, cv),

and hence

Dµc[u, v]
(
∆E |[u,v]

)
= Dµc[u, v] ◦D℘(p, v)

(
∆u × {0}

)
= D(µc ◦ ℘)(u, v)

(
∆u × {0}

)
= D℘(u, cv)

(
∆u × {0}

)
= ∆E |[u,cv].

• Proof using covariant derivatives: This is arguably the most inter-

esting proof, since it uses Theorem 39.3. Firstly, if ω ∈ Ωk(P, V ) is

any V -valued k-form on P , we define the horizontal component

of ω (with respect to ∆) to be the form ωh ∈ Ωk(P, V ) given by

ωh
u(ζ1, . . . , ζk) := ωu(ζh1 , . . . , ζ

h
k),

where as usual ζh denotes the horizontal component of ζ. Then ωh

is a horizontal vector-valued form. Now we claim:

ω ∈ ΩkG(P, V ) ⇒ (dω)h ∈ Ωk+1
G (P, V ). (39.7)

We split the proof of (39.7) into two parts:

(i) If ω ∈ Ωk(P, V ) is G-equivariant then so is dω.

(ii) If ω ∈ Ωk(P, V ) is G-equivariant then so is ωh.

To prove (i), fix g ∈ G. Then

τ∗g (dω) = dτ∗g (ω)

= dσg−1(ω)

= σg−1(dω)

where the first line used Lemma 36.8 and the last line used the fact

that σg−1 : V → V is a linear map. Next, to prove (ii), we take

g ∈ G, u ∈ P and ζ1, . . . , ζk ∈ TuP and compute

(τ∗gω
h)u(ζ1, . . . , ζk) = ωh

τg(u)

(
Dτg(u)ζ1, . . . , Dτg(u)ζk

)
= ωτg(u)

(
Dτg(u)ζh1 , . . . , Dτg(u)ζhk

)
= (τ∗gω)u(ζh1 , . . . ζ

h
k)

= σg−1

(
ωu
(
ζh1 , . . . ζ

h
k

))
= σg−1

(
ωh
u(ζ1, . . . , ζk)

)
,

where the second line used (39.6). Thus (39.7) is proved. We now

use (39.7) to define an exterior covariant differential d∇ : Ωk(M,E)→
Ωk+1(M,E) by

d∇α :=
­

(
dα̂
)h

(39.8)
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In particular, for k = 0, if s ∈ Γ(E) then

∇s :=
~

(
df
)h

where f : P → V is the function from Corollary 39.4. All the

axioms of a covariant derivative operator are easy to check.

This completes the proof (three times over). Wholesome exercise: Check that all
three proofs give rise to the same

connection on E.If π : E → M is a vector bundle of rank k, then its frame bundle

π̂ : Fr(E) → M is a principal GL(k)-bundle. In this special case, the

converse to Theorem 39.9 is true.

Proposition 39.10. Let π : E →M be a vector bundle. There is a bi-

jective correspondence between connections on E (in the vector bundle

sense) and connections on Fr(E) (in the principal bundle sense).

Proof. We need only show that a connection on E determines one of Only two, since – so far – we only

have two different ways to view

connections on principal bundles.
A third will be introduced next

lecture. . .

Fr(E), thus providing an inverse to the construction from Theorem

39.9. This time we will give two proofs:

• Proof using parallel transport: Suppose γ : [0, 1] → M is a smooth

curve in M . Let ` ∈ Fr(Eγ(0)). Write vi := `(ei), where ei is the Here n := rankE.

standard basis of Rn. Let ˜̀∈ Fr(Eγ(1)) denote the frame defined by

˜̀(ei) := Pγ(vi).

Then we define

PFr(E)
γ (`) := ˜̀.

We claim that PFr(E) is a parallel transport system on Fr(E). To

prove that PFr(E) satisfies the equivariance axiom, we must show

that

PFr(E)
γ (` ◦A) = PFr(E)

γ (`) ◦A

for A ∈ GL(n). This however is immediate from the fact that Pγ is

a linear isomorphism.

• Proof using distributions: As before we consider the map ℘ : Fr(E)×
Rn → E given by

℘(`, v) := `(v) ∈ Ep, ` ∈ Fr(Ep), v ∈ Rn.

We then define for ` ∈ Fr(E)

∆
Fr(E)
` :=

{
ζ ∈ T` Fr(E) | D℘(`, 0)(ζ, 0) ∈ ∆℘(`,0)

}
.

The verification that this defines a connection on Fr(E) is left for

you as another instructive exercise.

This completes the proof (twice over).

Remark 39.11. We have shown that there is a bijective correspon-

dence between connections on Fr(E) and connections on E. For a

general principal G-bundle P however, the passage given by Theorem

39.9 from connections on P to connections on an associated bundle

P ×G V may neither be injective or surjective.



Will J. Merry

LECTURE 40

The Connection Form

In Lecture 31 we defined the connection map κ : TE → E associated

to a connection on a vector bundle E. In this lecture we investigate

the principal bundle analogue, and then use this to define the curva-

ture of a principal bundle connection.

We being with a few general preliminaries on Lie group actions.

These results are valid for an arbitrary right action of a Lie group on a

manifold (i.e. we do not require a principal bundle action).

Definition 40.1. Let G be a Lie group with Lie algebra g, and sup-

pose τ is a smooth right action of G on a manifold P . Given ξ ∈ g, we We use right actions since this will

later be applied to principal bundles.

Nevertheless, with the usual modifica-
tions everything is also valid for left

actions.

associate a vector field Zξ on P via

Zξ(u) :=
d

dt

∣∣∣
t=0

τexp(tξ)(u) ∈ TuP.

We call Zξ a fundamental vector field on P .

Let us unpack this a bit. Fix u ∈ P . Then the curve γu(t) :=

τexp(tξ)(u) is a curve in P with initial condition γu(0) = τe(u) = u.

Thus γ̇u(0) belongs to TuP , and this is the value of the vector field Zξ:

Zξ(u) = γ̇u(0).

If f ∈ C∞(P ) then (thought of a derivation), one has

Zξ(f)(u) =
d

dt

∣∣∣
t=0

f ◦ γu(t) =
d

dt

∣∣∣
t=0

f(τexp(tξ)(u)).

Of course, calling something a “vector field” does not make it one.

Certainly Zξ is a section of TP , but it isn’t immediate why it is

smooth.

Lemma 40.2. The fundamental vector field Zξ is smooth (and hence a

vector field on P ).

Proof. It suffices to show by Proposition 8.2 that Zξ(f) is a smooth

function for each f ∈ C∞(P ). But this is clear from the formula

above. To make it more transparent, let us write µ for the action.

Then

Zξ(f)(u) =
d

dt

∣∣∣
t=0

(f ◦ τ)(u, exp(tξ))

is the composition of smooth functions in both u and t.

Example 40.3. Let G act on itself via right multiplication. Then by

Proposition 12.2 the fundamental vector field associated to ξ ∈ g is

exactly the left-invariant vector field Xξ.

In light of Example 40.3, the next result is the a generalisation of

Problem E.2.
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Proposition 40.4. The flow of Zξ is given by Φt(u) := τexp(tξ)(u).

Thus Zξ is always complete.

Proof. With γu as above, we need only show that γu is the integral

curve of Zξ through p. This follows from:

γ̇u(t) =
d

ds

∣∣∣
s=0

γu(t+ s)

=
d

ds

∣∣∣
s=0

τexp((t+s)ξ)(u)

=
d

ds

∣∣∣
s=0

τexp(sξ)(γu(t))

= Zξ(γu(t)).

An alternative way to define the fundamental vector field Zξ is via

the orbit map cf. (12.3).

τu : G→ P, τu(g) := τg(u).

Then with γu as above,

Dτu(e)ξ =
d

dt

∣∣∣
t=0

τu(exp(tξ))

=
d

dt

∣∣∣
t=0

τexp(tξ)(u)

= Zξ(u).

(40.1)

On Problem Sheet O you will show:

Proposition 40.5. Let G be a Lie group with Lie algebra g, and

suppose G acts on a manifold P on the right. Then the map ξ 7→ Zξ is

a Lie algebra homomorphism g→ X(P ).

Our next result makes contact with the adjoint representation from

Lecture 10.

Proposition 40.6. Let G be a Lie group with Lie algebra g, and

suppose G acts on a manifold P on the right. Then for ξ ∈ g one has

Dτg(u)Zξ(u) = ZAdg−1 (ξ)(τg(u)).

Proof. For any g, h ∈ G and u ∈ P , one has

τg ◦ τu(h) = τhg(u) = τ τg(u)(g−1hg).

Differentiating this identity at h = e and using the fact that Ad is the

differential of the conjugation action h 7→ gbg−1 at h = e, the claim

follows from the chain rule and (40.1).

We now restrict to the principal bundle case.

Proposition 40.7. Let π : P → M be a principal G-bundle. Then for

any u ∈ P , the differential Dτu(e) of the map τu from (40.1) at e is an

isomorphism

Dτu(e) : g→ VuP.
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Proof. We first show that any fundamental vector field Zξ is vertical.

The map π ◦ τu is constant, and thus by the chain rule

Dπ(u)Zξ(u) = Dπ(u) ◦Dτu(e)ξ

= D(π ◦ τu)(e)ξ

= 0.

Now suppose ξ ∈ kerDτu(e). Then (40.1) and uniqueness of integral

curves imply that u is a fixed point of τexp(tξ). But G acts freely on

P , whence ξ = 0. To complete the proof we note that both g and

VuP have dimension equal to the dimension of G. Thus Dτu(e) is an

isomorphism, as claimed.

We now define the principal bundle version of the connection map,

which this time is called a connection form.

Definition 40.8. Let π : P → M be a principal G-bundle, and let ∆

be a connection on P . The connection form $ of ∆ is the g-valued

1-form $ ∈ Ω1(P, g) defined by

$p(ζ) := Dτu(e)−1ζv.

This does indeed define an element of g: the vertical component ζv be-

longs to VuP and hence by Proposition 40.7 there is a unique element

$p(ζ) ∈ g such that Dτu(e)$p(ζ) = ζv.

Of course, it must be proved that $ really is smooth. The next re-

sult establishes this, and shows that $ uniquely determines ∆. Recall

that G acts on g via the adjoint representation Ad: G → GL(g). In

the following, whenever we talk about G acting on g, we will always

implicitly assume that the action is the adjoint one.

Theorem 40.9 (Properties of the connection form). Let π : P → M

be a principal bundle with connection ∆. Then the connection form $

is smooth and (τ,Ad)-equivariant, i.e.

τ∗g$ = Adg−1($), ∀ g ∈ G,

and moreover satisfies

$(Zξ) ≡ ξ, ∀ ξ ∈ g. (40.2)

Moreover if ω ∈ Ω1(P, g) is any equivariant form satisfying (40.2) then

kerωp defines a connection on P .

Remark 40.10. The connection form does not belong to Ω1
G(P, g)!

Indeed, (40.2) is the “opposite” of being a horizontal form. We will see

how that the curvature form, which is a g-valued 2-form, does belong

to Ω2
G(P, g).

Proof of Theorem 40.9. We prove the theorem in three steps.

1. In this step we show that $ is equivariant and that (40.2) holds.

We begin with the latter statement. By Proposition 40.7 for any u ∈
P one has Zξ(u) ∈ VuP and thus Zξ(u)v = Zξ(u); thus

$p(Zξ(u)) = Dτu(e)−1Zξ(u)] = ξ
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by (40.1). To verify equivariance, fix u ∈ P , g ∈ G, and ζ ∈ TuP . We

wish to show that

$τg(u)(Dτg(u)ζ) = Adg−1($u(ζ)). (40.3)

Since both sides of (40.3) are R-linear and ζ = ζh + ζv is the sum of

a horizontal and vertical vector, it suffices to prove (40.2) when ζ is

horizontal and when ζ is vertical.

If ζ is horizontal then by (39.6) so is Dτg(u)ζ. Thus $p(ζ) and

$τg(u)(Dτg(u)ζ) are both zero, and so (40.3) follows. If instead ζ is

vertical then by Proposition 40.7 we may assume ζ = Zξ(u) for some

ξ ∈ g. Then by Proposition 40.6 and (40.2) we have:

$τg(u)

(
Dτg(u)Zξ(u)

)
= $τg(u)

(
ZAdg−1 (ξ)(τg(u))

)
= Adg−1(ξ)

= Adg−1($u(Zξ(u)))

which proves (40.3) for the vertical case.

2. In this step we prove that $ is smooth. Choose a basis {ξi} of

g. Then by Proposition 40.7 the vector fields {Zξi} span the vertical

subbundle. Now fix a point u ∈ P . Since ∆ is a distribution, there

exist vector fields Yj on a neighbourhood of u that span ∆. Since ∆ is

complementary to V P , the collection {Zξi , Yj} span the entire tangent

bundle to P near u. Thus if Z is any vector field on P we can write

Z = f i Zξi + hj Yj

near p for smooth functions f i, hj . Then by (40.2) one has near p that

$(Z) = f i ξi.

The right-hand side is smooth, and since X was arbitrary this proves

that $ is smooth at u (this is a special case of Theorem 36.3). Since u

was also arbitrary, it follows that $ is smooth.

3. Finally we prove that any equivariant form ω ∈ Ω1(P, g) satis-

fying (40.2) determines a connection via ∆ := kerω. Indeed, kerω is

automatically a subbundle (as ω is smooth), and (40.2) tells us that

TP = kerω ⊕ kerDπ = kerω ⊕ V P.

Thus ∆ is a preconnection. Moreover since ω is equivariant we have

Dτg(kerω) ⊆ kerω.

Applying Dτg−1 to both sides and using equivariance again we have

kerω = Dτg−1 ◦Dτg(kerω) ⊆ Dτg−1(kerω) ⊆ kerω

which shows we have equality. Thus kerω is a connection. This com-

pletes the proof.

Remark 40.11. We now have three different ways to specify a con-

nection on a principal bundle: as a distribution, as a parallel transport
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system, and via a connection form. Just as with connections on vec-

tor bundles, it is useful to have a single fixed notation to refer to a

connection, which can then be used to mean whichever viewpoint is

convenient at the time. Thus from now on we will typically refer to a

connection on a principal bundle with the symbol $.



Will J. Merry

LECTURE 41

The Curvature Form

In this lecture we define the curvature form of a connection on a prin-

cipal G-bundle P . This is a g-valued 2-form on P which is horizontal

and equivariant, i.e. an element of Ω2
G(P, g).

We begin with some definitions. Let ∆ be a connection on a princi-

pal G-bundle π : P → M . We say a vector field Z on P is horizontal

if Z(u) ∈ ∆u for all u. Thus in particular given any vector field X on

M , its horizontal lift (Definition 28.9) is horizontal.

Remark 41.1. For any given u ∈ P and any given ζ ∈ TuP , there

exists a horizontal vector field Z on P such that Z(u) = ζh. Indeed,

we can even take Z to be a horizontal lift: let X denote any vector

field on M such that X(π(u)) = Dπ(u)ζ (such X exists by Problem

D.2). Then X(u) = ζh. Similarly Proposition 40.7 shows that for any

u ∈ P and any ζ ∈ TuP we can find ξ ∈ g such that Zξ(u) = ζv.

We now define the curvature of a connection on a principal bundle.

Firstly, we define flatness in the same way.

Definition 41.2. A connection ∆ is said to be flat if ∆ is integrable.

The curvature then measures how far away a connection is from

being flat.

Definition 41.3. Let π : P → M be a principal G-bundle with

connection $. The curvature form Ω ∈ Ω2(P, g) of $ is defined by

Ωu(ζ1, ζ2) := −$u
(
[Z1, Z2](u)

)
, p ∈ P, ζ1, ζ2 ∈ TuP

where Z1, Z2 are any two horizontal vector fields on P such that

Zi(u) = ζhi .

Such lifts exist by Remark 41.1. Of course, it must be proved that

Ω is well-defined (i.e. independent of the choice of Z1 and Z2) and

smooth. The negative sign is consistent with our original Definition

33.11 of the curvature of a connection on a vector bundle.

Lemma 41.4. The curvature form Ω is a well-defined horizontal g-

valued 2-form. Moreover the connection is flat if and only if Ω is iden-

tically zero.

Proof. Fix u ∈ P and ζ1, ζ2 ∈ TuP . Suppose Z1 and Z2 are any two

horizontal vector fields on P such that Zi(u) = ζhi . Let f be a smooth

function on P such that f(u) = 0, and let W denote any horizontal

vector field on P . Then any Z := Z1 + fW is another horizontal vector

field on P such that Z(u) = ζh1 ; moreover any horizontal vector field

which agrees with Z1 at u is locally a finite sum of vector fields of this

form. Then

[Z,Z2](u) = [Z1, Z2](u) + f(u)[W,Z2](u)− Z2(f)W (u),
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and thus taking vertical components, we see that

[Z,Z2](u)v = [Z1, Z2](u)v,

and thus also

$u([Z,Z2](u)) = $u([Z1, Z2](u)).

A similar argument shows that $u([Z1, Z2](u)) is independent of the

choice of Z2 as well. This proves that Ω is well defined. It is then

obvious that Ω is smooth and anti-symmetric, and hence defines an

element of Ω2(P, g). Moreover Ω is horizontal, since if say, ζ1 ∈ TuP
is a vertical vector, then the horizontal vector field Z1 ≡ 0 satisfies

Z1(u) = ζh1 . Finally, since ∆ = ker$, it is clear from the definition

that the distribution ∆ is integrable if and only if Ω is identically

zero.

Here is another quantitative way to understand the curvature form.

The proof is relegated to Problem Sheet O.

Lemma 41.5. Let π : P → M denote a principal G-bundle, and let $

denote a connection on P with curvature form Ω. Fix X,Y ∈ X(M),

and let X and Y denote their horizontal lifts. Then for any u ∈ P one

has [
X,Y

]
(u)−

[
X,Y

]
(u) = Dτu(e)

(
Ωp(X(u), Y (u))

)
.

In fact, the connection form belongs to Ω2
G(P, g) ⊂ Ω2(P, g).

Theorem 41.6 (Properties of the curvature form). Let π : P → M

denote a principal bundle, and let $ denote a connection on P . Then:

(i) The curvature Ω belongs to Ω2
G(P, g).

(ii) The two forms $ and Ω satisfy Cartan’s Structure Equation:

Ω = d$+
1

2
[$,$] (41.1)

(iii) The Bianchi Identity holds:

dΩ = [Ω,$]. (41.2)

Remark 41.7. The “Lie bracket” in (41.1) and (41.2) is the one from

Example 36.6. This is not a true Lie bracket. Indeed, (36.1) tells us

that for 1-forms it is symmetric instead of anti-symmetric. This can

be seen directly as follows: if Z,W are two vector fields on P then

[$,$](Z,W )
def
= [$(Z),$(W )]− [$(W ),$(Z)].

The Lie bracket on the right-hand side is the (genuine) Lie bracket on

g, and thus is anti-symmetric. Hence

[$,$](Z,W ) = 2[$(Z),$(W )].

This is the reason for the factor of a 1
2 on the right-hand side of (41.1). We warn the reader that some text-

books are inconsistent with how [·, ·]
is defined, and thus sometimes the
factor of 1

2
is incorrectly omitted.
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Remark 41.8. The Bianchi Identity (41.2) for connections on prin-

cipal bundles implies the Bianchi Identity for connections on vector

bundles (Theorem 36.21), as you will prove on Problem Sheet O.

Meanwhile Cartan’s Structure Equation (41.1) is the principal bundle

version of Theorem 35.10 – see Proposition 41.14 below.

The proof of Theorem 41.6 requires a preliminary lemma. We say a

vector field Z is τ-invariant if (τg)∗Z = Z for every g ∈ G, that is:

Dτg(u)Z(u) = Z(τg(u)), ∀u ∈ P, g ∈ G.

Lemma 41.9. Let π : P →M be a principal bundle with connection $.

Then:

(i) If X is a vector field on M then the horizontal lift X of X is right-

invariant.

(ii) If Z is a horizontal vector field on P then [Zξ, Z] is also horizontal

for any ξ ∈ g.

(iii) If Z is a τ -invariant vector field on P then [Zξ, Z] = 0 for any ξ ∈ g,

Proof. To prove (i) we take u ∈ P and g ∈ G. Since π ◦ τg = π, we

have

Dπ(τg(u))
(
Dτg(u)X(u)

)
= Dπ(u)X(u)

= X(π(u))

= X(π(τg(u))

= Dπ(τg(u))X(τg(u))

Since Dπ(τg(u))|∆τg(u)
is a linear isomorphism, we must have

Dτg(u)X(u) = X(τg(u)).

Thus X is right-invariant, as claimed.

To prove (ii), we recall from Proposition 40.4 that the flow of Zξ is

given by Φt(u) := τexp(tξ)(u). Thus using Theorem 10.4 we have

[Zξ, Z](u) = (LZξZ)(u)

= lim
t→0

Dτexp(−tξ)(τexp(tξ)(u))Z(τexp(tξ)(u))− Z(u)

t
.

Since τ preserves ∆ and Z is horizontal, the numerator of the last

equation belongs to ∆u for all t. Thus also [Zξ, Z](u) ∈ ∆u.

Finally to prove (iii), if Z is right-invariant then the numerator

above is identically zero, and thus [Zξ, Z] is too.

Proof of Theorem 41.6. We will prove the result in three steps.

1. In this step we prove Cartan’s Structure Equation (41.1). This

means that for any two vector fields Z,W on P we must show that

Ω(Z,W ) = d$(Z,W ) + [$(Z),$(W )] (41.3)

as functions P → g (cf. Remark 41.7). Since both sides of (41.3)

are point operators, it suffices to consider separately the three cases
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where one or both Z and W are horizontal or vertical respectively.

By Remark 41.1, this in turn reduces to the case where Z and W are

horizontal lifts, respectively fundamental vector fields. So let X,Y

denote two vector fields on M and let ξ, ζ ∈ g.

(i) The case Z = Zξ and W = Zζ (both sides vertical):

In this case Ω(Zξ, Zζ) = 0 as Ω is horizontal. To compute the

left-hand side we first start with:

d$(Zξ, Zζ) = Zξ($(Zζ))− Zζ($(Zξ))− $([Zξ, Zζ ])

= d($(Zζ))Zξ − d($(Zξ))Zζ − $(Z[ξ,ζ])

= 0− 0− [ξ, ζ],

where the first line used Theorem 36.7, the second line used Prob-

lem O.2, and the third line used the fact that $(Zζ) is the constant

function u 7→ ζ by (40.2), and thus d($(Zζ)) is identically zero.

Since

[$(Zξ),$(Zζ)] = [ξ, ζ]

by (40.2) again, this shows that the right-hand side of (41.3) is also

identically zero.

(ii) The case Z = Zξ and W = Y (one side vertical, one side horizon-

tal): As before we have Ω(Zξ, Y ) = 0 as Zh
ξ = 0. Moreover by part

(i) and part (ii) of Lemma 41.9 we have [Zξ, Y ] = 0, and thus

d$(Zξ, Y ) = Zξ($(Y )︸ ︷︷ ︸
=0

)− Y ($(Zξ))− $
(
[Zξ, Y ]︸ ︷︷ ︸

=0

)
= 0− d($(Zξ))Y − 0

= 0

Similarly [$(Zξ),$(Y )] = 0 as $(Y ) = 0. This proves (41.3) in this

case too.

(iii) The case Z = X and W = Y (both sides horizontal):

In this case we have by

Ω(X,Y ) = −$
(
[X,Y ]

)
= d$(X,Y )−X($(Y )) + Y ($(X))

= d$(X,Y )

= d$(X,Y ) + [$(X),$(Y )]

where the second line used the Theorem 36.7 again and the last two

lines used $(X) = $(Y ) = 0. This proves (41.3) in this case, and

hence in general.

2. In this step we prove the Bianchi Identity (41.2). For this we
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argue as follows:

dΩ
(†)
= d2$+

1

2
d[$,$]

(‡)
=

1

2
([d$,$]− [$, d$])

(o)
= [d$,$]

(†)
= [Ω,$]− 1

2
[[$,$],$]

(∗)
= [Ω,$]

where (†) used the Cartan Structure Equation (both times), (‡) used

Problem O.1, (o) used (36.1), and finally (∗) used Problem O.3. This

proves the Bianchi Identity.

3. To complete the proof we show that Ω is equivariant, and hence

defines an element of Ω2
G(P, g). For this we use Cartan’s Structure

Equation and the fact that $ is equivariant:

τ∗gΩ = τ∗g

(
d$+

1

2
[$,$]

)
= Adg−1(d$) +

1

2

[
Adg−1($),Adg−1($)

]
= Adg−1(Ω),

where the second equality used the fact that d$ is also equivariant

(see claim (ii) from our third proof of Theorem 39.9). This finally

completes the proof of the theorem.

Since the curvature belongs to Ω2
G(P, g), by Theorem 39.3 we can

interpret it also as a bundle-valued form on M . But which bundle?

Definition 41.10. Let π : P → M denote a principal G-bundle. We

denote by Ad(P ) = P ×G g the vector bundle over M corresponding to

σ = Ad: G→ GL(g) and call this the adjoint bundle of P .

Corollary 41.11. Let π : P → M be a principal G-bundle and let

$ denote a connection on P . Then the curvature Ω induces a bundle-

valued 2-form qΩ ∈ Ω2(M,Ad(P )). Explicitly, for p ∈ M and for

ξ1, ξ2 ∈ TpM , one has

qΩp(ξ1, ξ2) := [u,Ωu(ζ1, ζ2)] ,

where u is any element in Pp and ζ1, ζ2 ∈ TuP are any two vectors

such that Dπ(u)ζi = ξi.

Proof. Apply Theorem 39.3 to Ω.

Let π : P →M denote a principal G-bundle, and let σ denote a rep-

resentation of G on a vector space V . We have seen that a connection

$ on a principal bundle P induces a connection ∇ on the associated

bundle E = P ×G V ; moreover the third proof of Theorem 39.9 gave

an explicit formula (39.8) for computing the covariant differential op-

erator d∇. We conclude this lecture by relating the curvature form Ω

of $ to the curvature R∇ of ∇. For this we first need to give another
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version of the formula (39.8) that explicitly uses the connection form

$.

The starting point for this discussion is the observation that the

differential

µ := Dσ(e) : g→ gl(V ), ξ 7→ µξ

of σ is a Lie algebra representation of g (this is a special case of

Proposition 11.7). For example, if σ = Ad is the adjoint represen-

tation of G on g then µ = ad.

The following lemma is on Problem Sheet O.

Lemma 41.12. Let π : P → M denote a principal G-bundle, and let

σ : G → GL(V ) denote a smooth effective representation of G. Let

µ := Dσ(e), and suppose f : P → V is an equivariant smooth function.

Then for any ξ ∈ g, one has

Zξ(f) + µξ(f) = 0.

We can combine µ and $ to produce a 1-form out of a smooth (not

necessarily equivariant) function f : P → V . Namely, the map

ζ ∈ TuP 7→ µ$u(ζ)(f(u)) ∈ V

defines an element of Ω1(P, V ), which by a slight abuse of notation we

denote by µ$(f).

Proposition 41.13. If s ∈ Γ(E) corresponds to an equivariant func-

tion f : P → V (Corollary 39.4) then

∇s = qβ, where β := df + µ$(f)

Thus if X ∈ X(M), the section ∇Xs of E corresponds to the equivari-

ant function X(f), where X is the horizontal lift of X.

Proposition 41.13 is the special case k = 0 of a more general result

that expresses the exterior covariant differential d∇ in terms of $.

This result is somewhat technical (and messy) to state, and hence it is

deferred to the bonus section below.

Next, observe that the representation µ induces a vector bundle

homomorphism

Φ = Φµ : Ad(P )→ End(E),

given explicitly by

Φ[u,ξ]

(
[u, v]

)
:= [u, µξ(v)], u ∈ P, ξ ∈ g, v ∈ V.

This in turn induces a C∞(M)-linear map Φ∗ : Γ(Ad(P ))→ Γ(End(E))

by This is the easy direction of the Hom-
Gamma Theorem 20.25.Φ∗(s)(p) := Φ(s(p)), p ∈M.

Finally, we can also think of Φ∗ as defining a map

Φ∗ : Ωk(M,Ad(P ))→ Ωk(M,End(E)),
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by declaring that on a decomposable element ω ⊗ s, one has

Φ∗(ω ⊗ s) := ω ⊗ Φ∗(s). (41.4)

With all of this notation out of the way, here is our desired result.

Proposition 41.14. Let π : P → M denote a principal G-bundle,

and let σ : G → GL(V ) denote a smooth effective representation of

G. Let $ denote a connection on P , and let ∇ denote the induced

connection on E. Let Ω denote the curvature form of $, and consider
qΩ ∈ Ω2(M,Ad(P )) as in Corollary 41.11. Then with Φ∗ defined as in

(41.4), one has

Φ∗
(

qΩ
)

= R∇.

Proof. In this proof we will suppress the bijection of Corollary 39.4

between sections of E and equivariant functions f : P → V , and

treat it as an identification. Thus we write s = f to indicate that a

section s corresponds to f . Thus Proposition 41.13 can be stated more

succinctly as

∇Xs = X(f).

This will help keep the notation transparent. With this convention in

mind, by Theorem 35.10 we have

R∇(X,Y )(s) =
[
X,Y

]
(f)−

[
X,Y

]
(f).

By Lemma 41.5 and (40.1), one has([
X,Y

]
−
[
X,Y

])
(u) = −Z

Ωu

(
X(u),Y (u)

)(u)

Thus applying Lemma 41.12 we obtain This is where it is crucial we defined
Ω with a negative sign.

R∇(X,Y )(s) = µ
Ω
(
X,Y

)(f),

which – after unravelling the notation – is exactly what we wanted to

prove.

Bonus Material for Lecture 41

First, a general definition. Let V and W by vector spaces and suppose

µ : W → GL(V ) is a representation.

Definition 41.15. Suppose α ∈ Ωh(P,W ) and β ∈ Ωk(P, V ) are

vector-valued forms on W and V respectively. We define α ∧µ β ∈
Ωh+k(P, V ) by(

α∧µβ
)
u
(ζ1, . . . , ζh+k) (41.5)

:=
1

h!k!

∑
%∈Sh+k

sgn(%)µαu(ζ%(1),...,ζ%(h))

(
βu
(
ζ%(r+1), . . . ζ%(r+s)

))
.

This is similar (but not quite the same) as the construction of the

wedge product ∧β in Lecture 26.
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Going back to the setting of Proposition 41.13, we are interested in

the case W = g and µ = Dσ(e). Here is the main result of this bonus

section.

Theorem 41.16. Let π : P → M denote a principal G-bundle, and

let σ : G → GL(V ) denote a smooth effective representation of G.

Abbreviate by E = P ×G V the associated vector bundle. Suppose

$ is a connection on P , and let d∇ denote the corresponding exterior

covariant differential on E. Then for any α ∈ Ω(M,E) we have

d∇α = qβ,

where β := dα̂+ $ ∧µ α̂.

As the proof will show, β is horizontal and equivariant, and hence qβ

is well-defined.

Proposition 41.13 is the special case k = 0 of Theorem 41.16:

Proof of Proposition 41.13. If f ∈ Ω0(P, V ) is a zero-form, (41.5)

simplifies to

$ ∧µ f = µ$(f).

Moreover if X ∈ X(M) then ∇Xs is the section of E corresponding to

the equivariant function

df(Z) + µ$(Z)(f),

where Z is any vector field on P such that Dπ(Z) = X (this is inde-

pendent of the choice of Z by equivariance). In particular, choosing

Z = X, the second term disappears, and thus ∇Xs corresponds to

X(f), as required.

Proof of Theorem 41.16. We will prove the theorem in three steps.

1. In this step we set up notation and outline the strategy of the

proof. Suppose α ∈ Ωk(M,E). By the definition (cf. (39.8)) of d∇, we

have

d∇α :=
­

(
dα̂
)h
.

Since the ·̂ → q· correspondence is bijective, it suffices to show that if

β := α̂ ∈ ΩkG(P, V ) then for all u ∈ P and all ζ0, . . . , ζk ∈ TuP , we

have: In the sum below, we think of ele-
ments % ∈ Sk+1 as permutations
of {0, 1, . . . , r} (instead of the more
usual {1, 2, . . . , r + 1}.

dβu
(
ζh0 , . . . , ζ

h
k

)
= dβu

(
ζ0, . . . , ζk

)
(41.6)

+
1

k!

∑
%∈Sk+1

sgn(%)µ$u(ζ%(0))

(
β
(
ζ%(1), . . . ζ%(k)

))
.

Since both sides of (41.6) are linear in all variables, as in the proof

of Cartan’s Structure Equation (41.3) we may assume that each ζi is

either vertical or horizontal. Moreover by Remark 41.1 we may assume

ζi = Zi(u) for some vector field Zi on P , which is either of the form

Zi = Xi for some vector field Xi on M (if ζi is horizontal) or of the

form Zi = Zξi for some ξi ∈ g (if ζi is vertical). Define functions

Ψ0,Ψ1,Ψ2 : P → V by

Ψ0(u) := dβu
(
Z0(u)h, . . . , Zk(u)h

)
,
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and

Ψ1(u) := dβu
(
Z0(u), . . . , Zk(u)

)
,

and

Ψ2(u) :=
1

k!

∑
%∈Sk+1

sgn(%)µ$u(Z%(0)(u))

(
β
(
Z%(1)(u), . . . Z%(k)(u)

))
.

It suffices to show that

Ψ0 = Ψ1 + Ψ2, as functions P → V.

2. In this step we deal with the two easy cases. If every single Zi is

horizontal then Ψ0 = Ψ1 by definition, and Ψ2 = 0 since $(Zi) = 0 for

every i. Next, suppose two or more of the Zi are vertical. In this case

without loss of generality we may assume Z0 = Zξ0 and Z1 = Zξ1 are

vertical. In this case we again have Ψ0 = 0, since Zh
0 = Zh

1 = 0. Also

Ψ2 = 0 as at least one of the arguments Z%(i) for i = 0, . . . , k is vertical

and β = α̂ is horizontal. Thus we need only show that Ψ1 = 0. By

Theorem 36.7 we have

Ψ1 =

k∑
i=0

(−1)iZi
(
β(Z0, . . . , Ẑi, . . . , Zk)

)
(41.7)

+
∑

0≤i<j≤k

(−1)i+jβ([Zi, Zj ], Z0, . . . Ẑi, . . . , Ẑj , . . . , Zk).

Every term in the first summand is zero, since at least one of the

arguments is zero. The only term in the second summand that could

possibly be non-zero is i = 0 and j = 1. But in this case by Problem

O.2, [Z0, Z1] = Z[ξ0,ξ1] is also vertical, and hence this term is zero too.

3. In this step we deal with the hardest case, where exactly one of

the Zi is vertical. Without loss of generality assume that Z0 = Zξ and

that Zi = Xi for vector fields Xi on M for i = 1, . . . , k. As before,

Ψ0 = 0 (since Zh
0 = 0). Now in (41.7) some of the terms survive, and

we get

Ψ1 = Zξ
(
β(Z1, . . . , Zk)

)
+

k∑
i=1

(−1)iβ([Zξ, Zi], Z1, . . . Ẑi, . . . , Zk).

But actually by part (iii) of Lemma 41.9, we have [Zξ, Zi] = [Zξ, Xi] =

0, and thus Ψ1 = Zξ
(
β(Z1, . . . , Zk)

)
. Now if we look at Ψ2, all the

terms die apart from those permutations % such that %(0) = 0. Since

$(Zξ) = ξ, it follows that

Ψ2 =
1

k!

∑
%∈Sk+1 with %(0)=0

sgn(%)µξ

(
β
(
Z%(1), . . . Z%(k)

))

= µξ

 1

k!

∑
%∈Sr+1 with %(0)=0

sgn(%)β
(
Z%(1), . . . Z%(k)

)
= µξ

(
β(Z1, . . . , Zk)

)
.

Thus to complete the proof we need to show that

Zξ(β(Z1, . . . , Zk)) + µ(v)[β(Z1, . . . , Zk)] = 0. (41.8)
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But since Zi = Xi is right-invariant for each i and β ∈ ΩkG(P, V ) is

equivariant, it follows that f := β(Z1, . . . , Zk) is itself equivariant.

Thus (41.8) follows from Lemma 41.12.



Will J. Merry

LECTURE 42

The Ambrose–Singer Holonomy Theorem

In this lecture we define holonomy in principal bundles, and prove the

principal bundle version of the Ambrose–Singer Holonomy Theorem.

The vector bundle version (Theorem 35.6) is a simple corollary of the

principal version, as you will prove on Problem Sheet O.

Definition 42.1. Let π : P → M be a principal G-bundle with

connection $. The holonomy group Hol$(p) of $ at p ∈ M is the

group of equivariant diffeomorphisms of the fibre Pp of the form Pγ ,

where γ is a piecewise smooth loop in M based at p. The restricted

holonomy group Hol$0 (p) ⊂ Hol$(p) is the subgroup consisting of

parallel transport around null-homotopic loops γ.

The following result is the principal bundle analogue of Proposition

32.15. The key difference is that we can view the holonomy group

Hol$(p) as being a subgroup of G itself.

Proposition 42.2. Let π : P → M be a principal G-bundle with

connection $.

(i) For each u ∈ P , there is a subgroup H$(u) ⊂ G and a group

isomorphism

φu : Hol$(π(u))→ H$(u).

(ii) The subgroups H$(u) and H$(τg(u)) are conjugate in G.

(iii) The subgroups H$(u) and H$(Pγ(u)) coincide

(iv) There is a subgroup H$
0 (u) ⊂ H$(u) such that φu restricts to define

an isomorphism Hol$0 (p) → H$
0 (u). This subgroup also satisfies the

assertions of part (ii) and (iii).

Proof. Let p ∈ M and u ∈ Pp. If γ is a piecewise smooth loop based

at p, we define φu
(
Pγ
)

to be the unique element g ∈ G such that

τg(u) = Pγ(u).

We set H$(u) to be the image of φu. Suppose γ and δ are two piece-

wise smooth loops based at p, and set

g := φu(Pγ), and h := φu(Pδ(u)).

Then by equivariance (Axiom (i) of Definition 39.7), we have

Pγ ◦ Pδ(u) = Pγ(τh(u))

= τh(Pγ(u))

= τh(τg(u))

= τgh(u).

Last modified: July 17, 2021.
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This shows that

φu(Pγ ◦ Pδ) = gh = φu(Pγ) ◦ φu(Pδ).

Thus H$(u) is a subgroup of G and that φu is a group homomor-

phism. This proves (i). Next, using the equivariance axiom again, if

φu(Pγ) = g then

τh−1gh(τh(u)) = τgh(u)

= τh(τg(u))

= τh(Pγ(u))

= Pγ(τh(u)),

so that

φτh(u)

(
Pγ
)

= h−1gh.

Thus

H$(τh(u)) = h−1H$(u)h,

which proves (ii). To prove (iii), let γ : [0, 1] → M be a path in M

from p := γ(0) to q := γ(1). Let u ∈ Pp and set v := Pγ(u). We claim

that H$(u) ⊆ H$(v). Indeed, suppose g ∈ H$(u). Then there exists a

piecewise smooth loop δ based at p such that

Pδ(u) = τg(u).

Then γ− ∗ δ ∗ γ is a loop based at q, and

Pγ−∗δ∗γ(v) = Pγ ◦ Pδ ◦ Pγ−(v)

= Pγ ◦ Pδ(u)

= Pγ(τg(u))

= τg(Pγ(u))

= τg(v).

Thus g ∈ H$(v). Applying the same argument with γ− in place of γ

shows that H$(v) ⊆ H$(u), and thus H$(u) = H$(v). This proves

(iii). Finally, (iv) is proved in the same way, and we leave the details

as an exercise.

The holonomy groups H$(u) ⊂ G enjoy the same properties that

the holonomy groups did for vector bundles. The next theorem sum-

marises the key properties we will need. The proofs all proceed analo-

gously to the corresponding statements about vector bundles.

Theorem 42.3. Let π : P → M be a principal G-bundle with con-

nection $. Then the holonomy group H$(u) is a Lie subgroup of G.

The connected component of H$(u) containing the identity is exactly

H$
0 (u). If M is simply connected then H$(u) = H$

0 (u). Finally, H$(u)

is the trivial subgroup {e} for all u ∈ P if and only if P is a trivial

bundle and $ is the trivial connection.

Meanwhile the proof of the next result is on Problem Sheet O.
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Proposition 42.4. Let π : P → M be a principal G-bundle. Let σ

be a representation of G on a vector space V , and let E = P ×G V

denote the associated vector bundle. Let $ denote a connection on P

and let ∇ denote the associated connection on E. Fix p ∈ M . Then

we can regard Hol$(p) and Hol∇(p) as subgroups of G and GL(V )

respectively, which are defined up to conjugation. Then (also up to

conjugation)

σ
(

Hol$(p)
)

= Hol∇(p).

We now define the principal bundle version of Definition 34.2. This

makes use of the notion of principal subbundles from Definition 17.21.

Definition 42.5. Let π : P → M be a principal G-bundle, let H ⊂ G

be a Lie subgroup and suppose Q ⊂ P is a principal H-subbundle of

P . A connection $ on P with associated distribution ∆ is said to be

reducible to Q if the distribution ∆ ∩ TQ defines a connection on

Q. Equivalently, if ι : Q ↪→ P denotes the inclusion this means that Compare Problem M.6.

$|Q = ι∗$ is a connection form on Q with curvature Ω|Q = ι∗Ω.

On Problem Sheet O you will investigate the relationship between

this definition and the notion of a G-connection on a vector bundle (cf.

Problem N.3). The next result is similar to Theorem 34.5.

Theorem 42.6 (The Reduction Theorem). Let π : P → M be a

principal G-bundle over a connected manifold M and let $ denote a

connection on P . Fix a point u0 ∈ P and set H := H$(u0) ⊂ G. Let

Q denote the set of all points u ∈ P which can be joined to u0 via a i.e. u = Pγ(u0) for some γ.

piecewise smooth horizontal path. Then Q is a principal H-subbundle

of P , and the connection $ is reducible to Q.

The proof of the Reduction Theorem is an application of Problem

G.10. Since Problem G.10 was a bonus problem, the proof of the

Reduction Theorem is non-examinable and hence relegated to the

bonus section below.

We now state and prove the principal bundle version of the Ambrose–

Singer Holonomy Theorem. The proof is another application of the

Frobenius Theorem 15.4.

Theorem 42.7 (The Ambrose–Singer Holonomy Theorem Redux).

Let π : P → M be a principal G-bundle over a connected manifold

M . Let $ denote a connection on P , and let Ω ∈ Ω2
G(P, g) denote

the curvature form. Fix u0 ∈ P and set H = H$(u0) ⊂ G. Let Q

denote the principal H-subbundle of P from the Reduction Theorem

42.6. Then the Lie algebra h of H is the subalgebra of g spanned by

all elements of the form Ωu(ζ1, ζ2) for u ∈ Q and ζ1, ζ2 ∈ TuQ.

Proof. Let k denote the Lie subalgebra of g spanned by elements of

the form Ωu(ζ1, ζ2) for u ∈ Q and ζ1, ζ2 ∈ TuQ. Then certainly k ⊆ h.

Let k = dim k and m = dimM , so that dim h = dimQ −m. We will

show that also k = dimQ−m, which implies k = h.

Define a distribution ∆̃ on Q by

∆̃u := ∆u ⊕Dτu(e)(k),
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where ∆ is the connection distribution. To see that this is indeed

a distribution on Q, we argue as in the proof of Step 2 of Theorem

40.9. Take a basis {ξi | i = 1, . . . , k} of k, and let Zξi denote the

fundamental vector fields associated to this basis. Fix v ∈ Q, and let

{Xj | j = 1, . . . ,m} denote vector fields on M such that {Xj(q)} is

a basis of TqM for all q near π(v), and let Xj denote the horizontal

lifts of Xj . Then {Zξi , Xj} spans ∆̃ near q, and thus ∆̃ is indeed a

distribution of dimension m+k. Next. we claim ∆̃ is integrable. Using

Lemma 14.10, we need only check:

(i) [Zξi , Zξj ] belongs to ∆̃.

(ii) [Zξi , Xj ] belongs to ∆̃.

(iii) [Xi, Xj ] belongs to ∆̃.

Of these, (i) follows because [Zξi , Zξj ] = Z[ξi,ξj ] by Problem O.2 and

because k is (by definition) a subalgebra. Next, (ii) is immediate, since

by part (iii) of Lemma 41.9 such a bracket is always zero. Finally,

(iii) follows from Lemma 41.5. Thus by the Frobenius Theorem 15.4,

∆̃ induces a foliation of Q. Let L denote the leaf containing u0. We

claim that in fact L = Q (and thus this is not a particularly thrilling

foliation). Indeed, if ρ(t) is a horizontal curve starting at u0 then

ρ̇(t) ∈ ∆ρ(t) ⊂ ∆̃ρ(t) for each t, and thus im ρ is contained in an inte-

gral manifold of ∆̃. By maximality, im ρ is also contained in L. Since

ρ was arbitrary, this shows that Q ⊆ L. Since L ⊆ Q by definition,

we have L = Q as claimed. Since dimL = m + k, this shows that

k = dimQ−m = dim h. This completes the proof.

We conclude this lecture by stating the following existence result.

The proof is not too hard, but it is a long and somewhat uninspiring See for instance Theorem 8.2 on

p90 of Foundations of Differential
Geometry Vol I. by Kobayashi and

Nomizu.

computation, and hence we will skip it.

Theorem 42.8. Let π : P → M denote a principal G-bundle. Assume

dimM ≥ 2 and that G is connected. Then there exists a connection $

on P with H$(u) = G for all u ∈ P .

As a corollary, we obtain the following converse to the Reduction

Theorem 42.6.

Corollary 42.9. Let π : P → M be a principal G-bundle, where

dimM ≥ 2. Then for any connected Lie subgroup H ⊂ G, there exists

a connection $ on P with H$(u) = H (for some u ∈ P ) if and only if

P admits a principal H-subbundle.

Remark 42.10. Corollary 42.9 means that the question as to when a

given principal G-bundle admits a connection with holonomy equal to

a prescribed subgroup H of G is not very geometrically interesting. In-

deed, the existence (or non-existence) of a principal H-subbundle is a

purely topological issue, and can be settled using tools from algebraic

topology. We will see in Lecture 45 that the situation dramatically

changes if we impose the additional condition that our connection is

torsion-free.

https://www.wiley.com/en-ch/Foundations+of+Differential+Geometry%2C+Volume+1-p-9780471157335
https://www.wiley.com/en-ch/Foundations+of+Differential+Geometry%2C+Volume+1-p-9780471157335
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Bonus Material for Lecture 42

In this bonus section we prove the Reduction Theorem 42.6.

Proof of the Reduction Theorem 42.6. The proof is an application

of Problem G.10. Part (iii) of Proposition 42.2 tells us that Q is pre-

served by the action of H, and that the action of H on Pq ∩ Q for

any point q ∈ M is transitive. Moreover since M is connected the

restriction of π to Q is surjective (compare this to the proof of Step 1

of Theorem 33.9). Thus to show that Q is a principal H-subbundle,

by Problem G.10 we need only construct local sections of P that take

values in Q.

This is a variation of the argument from the proof of Step 1 of

Theorem 30.1. Set p0 = π(u0) and fix an arbitrary point p ∈ M . Let

ψ : TM |U → M denote an adapted ray parametrisation at p, and write

γq,ξ(t) = ψ(q, tξ) for q ∈ U and ξ ∈ TqM . Now for u ∈ Pq we define a

section su ∈ Γ(U,P ) by declaring that

su(γq,ξ(t)) =𝕡γq,ξ;u(t).

We claim that if u ∈ Qq ⊂ Pq then su takes values in Q. Indeed, if

u = Pγ(u0) for some path γ : [0, 1] → M such that γ(0) = p0 and

γ(1) := q then

su(γq,ξ(t)) = Pγ∗γtq,ξ(u) ∈ Q,

where γtq,ξ(r) := γq,ξ(rt) for 0 ≤ r ≤ 1.

Finally, to see that the connection is reducible to Q, we observe

that by definition any horizontal curve starting in Q must remain in

Q, and hence, if ∆ denotes the connection distribution of $, one has

∆q ⊂ TqQ. Since clearly VqQ = VqP ∩ TqQ, it follows that TqQ =

∆q ⊕ VqQ. Thus ∆ is a preconnection on Q, and the equivariance

condition is clear from above. This completes the proof.



Will J. Merry

LECTURE 43

Geodesics and Sprays

In this lecture we study geodesics and sprays. These are concepts

normally associated with Riemannian geometry. However, as we will

see, they make perfect sense for an arbitrary connection on a manifold.

The word “geodesic” needs to be understood carefully however – in

this more general setting there is no relation between geodesics and

shortest paths, as we explain below.

For the remainder of the course we will almost exclusively work

on the tangent bundle TM of a manifold M , rather than an

arbitrary vector bundle. Thus we adopt the convention that a

connection on M is, by definition, a connection on the vector

bundle π : TM →M .

We remind the reader that we (sometimes) write points in TM

as pairs (p, ξ): this is simply notation to indicate that ξ ∈ TpM .

Definition 43.1. We define the Christoffel symbols of the chart x Here and elsewhere, when there is no
danger of confusion, we abbreviate the

vector field ∂
∂xi

by ∂i.
and the connection ∇ as

Γkij(p) := dxkp(∇∂i∂j)(p)

Thus Γkij : U → R is a smooth function on U .

Pay attention to the indices—the Einstein Summation Convention

is very useful here.

Lemma 43.2. The connection ∇ is uniquely determined on U by the

Christoffel symbols.

Proof. If X and Y are any two vector fields on U then we can write

X = ai ∂i and Y = bj ∂j for smooth functions ai, bj . Abbreviate

∂ib
j :=

∂bj

∂xi
= dbj(∂i).

Then by the axioms for a covariant derivative operator (Definition

31.6) we have

∇XY = ∇ai ∂i(b
j ∂j)

= ai∇∂i(bj ∂j)
= aibj∇∂i∂j + ai∂ib

j∂j

=
(
ai bj Γkij + ai∂ib

k
)
∂k,

where on the last line we replaced the dummy variable j by k.

Lemma 43.2 gives yet another viewpoint on connections: they are

determined locally by m3 (where m = dimM) smooth functions Γkij .

Last modified: July 17, 2021.
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On Problem Sheet P you will investigate how the Christoffel symbols

of two charts with overlapping domains are related.

Definition 43.3. Let ∇ be a connection on M . A curve γ in M is

called a geodesic of ∇ if γ̇ ∈ Γγ(TM) is a parallel curve:

∇γT γ̇ = 0, (43.1)

where T = ∂
∂t and ∇γ denotes the pullback connection.

Example 43.4. Consider the connection ∇ on Sm introduced in

Problem L.3. By Problem M.5, if p, q are two points in Sm such that

p ⊥ q then the great circle γ : [0, 2π]→ Sm defined by γ(t) = (cos t)p+

(sin t)q is a geodesic.

The word “geodesic” was originally used to mean the shortest

path between two points on the Earth’s surface. As we will see

in Lecture ??, if M is endowed with a Riemannian metric g,

and the connection ∇ is the Levi-Civita connection (see Theo-

rem 46.1) of (M, g), then M admits a metric dg (in the sense of

point-set topology) for which every geodesic is locally a length-

minimising curve. In this lecture however, we are working with

arbitrary connections on manifolds, and thus geodesics do not

need to locally minimise lengths – and indeed, without refer-

ence to a specific metric on M the idea of “length-minimising”

simply does not make sense!

Geodesics always exist with prescribed initial conditions. The next

result is a variation of Proposition 29.9.

Proposition 43.5. Let ∇ be a connection on M , and let (p, ξ) ∈ TM .

There exists a geodesic γ of ∇ in M with initial condition γ(0) = p

and γ̇(0) = ξ. Moreover γ is unique up to the domain of definition.

Proof. Let (U, x) be a chart on M and γ a smooth curve with image

in U . Abbreviate γi = xi ◦ γ and ρi := ∂i ◦ γ ∈ Γγ(TM). Then

γ̇ = (γi)′∂i, and by the chain rule (31.9) for covariant derivative

operators, we have

(∇γT ρi)(t) = ∇γ̇(t)∂i.

Thus from Lemma 43.2 we obtain

(∇γT γ̇)(t) =
(

(γk)′′(t) + (γi)′(t)(γj)′(t) Γkij(γ(t))
)
ρk(t).

This means that (43.1) is locally equivalent to the following second-

order system of ordinary differential equations:

(γk)′′ + (γi)′(γj)′ Γkij(γ) = 0, ∀ 1 ≤ i, j, k ≤ m. (43.2)

We refer to (43.2) as the geodesic equation. The conclusion now

follows from standard existence and uniqueness theorems for ordinary

differential equations. Note that in general we only get short-term

existence (unless Γkij = 0).
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Lemma 43.6. Let γ : (a, b) → M be a non-constant geodesic, and let

h : (a1, b1)→ (a, b) be a smooth map. Then δ := γ ◦ h : (a1, b1)→ M is

a geodesic if and only if h is an affine map, i.e. h′′ = 0.

Proof. Using the chain rule for covariant derivative operators (31.9)

once more we have

∇δT δ̇ = ∇δT
(
h′(γ̇ ◦ h)

)
= h′′ (γ̇ ◦ h) + h′∇δT (γ̇ ◦ h)

= h′′ (γ̇ ◦ h) + (h′)2∇γT γ̇
= h′′ (γ̇ ◦ h) + 0.

Since γ̇ is non-constant we see that ∇δT δ̇ = 0 if and only if h′′ = 0.

In general it may not be possible to extend a geodesic to be defined

on all of R. The following definition is analogous to Definition 9.11.

Definition 43.7. A connection ∇ on a manifold is called complete if

all geodesics have maximal domain of definition equal to R.

Example 43.8. The connection ∇ on Sn from Problem M.5 is com-

plete. Indeed, by Example 43.4 and Proposition 43.5, we see that any

geodesic on Sn is a great circle of the form γ(t) = (cos t)p+ (sin t)q for

two perpendicular points on Sm, and moreover any such geodesic may

be extended to all of R by periodicity.

In fact, Definition 43.7 is more than analogous to Definition 9.11 –

it is merely a special case, as we shall now see.

Convention. We (sometimes) write elements of TTM as triples

(p, ξ, ζ): this is simply notation to indicate that ζ ∈ T(p,ξ)TM .

In Lemma 31.4 we showed how for a vector bundle π : E → M , the

differential of π gave rise to a new vector bundle Dπ : TE → TM .

When applied to E = TM , this means that we can see the total space

of TTM (the tangent bundle of the tangent bundle) as a bundle over

TM in two different ways:

(i) πTM : TTM → TM ,

(ii) Dπ : TTM → TM .

These are not the same structure – they do not even have the same

fibre. We temporarily use the notation T(ii)TM to denote the total

space of the bundle (ii). Then the fibre of T(ii)TM over (p, ξ) ∈ TM is

T(ii)TM(p,ξ) = {(p, ζ, η) | Dπ(ζ)η = ξ} .

Let µc : TM → TM and µ̃c : TTM → TTM denote scalar multiplica-

tion in the fibres in TM and TTM respectively, i.e.

µc(p, ξ) := (x, cξ), µ̃c(p, ξ, ζ) := (p, ξ, cζ). (43.3)

This should not be confused with scalar multiplication in the bundle

T(ii)TM , which is given by c • (x, ξ, ζ) := (x, c ξ,Dµc(ξ)ζ). cf. (31.4)
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Definition 43.9. Let M be a manifold. A vector field S on the tan-

gent bundle TM is called a spray on M if the following two condi-

tions hold:

Dπ ◦ S = idTM (43.4)

S ◦ µc = µ̃c ◦Dµc ◦ S. (43.5)

Every vector field on TM satisfies (by definition) the section prop-

erty for the bundle πTM : TTM → TM . Condition (43.4) is exactly

the section property for the bundle T(ii)TM . Thus a spray S is simul-

taneously a section of both bundles:

S ∈ Γ(TTM) ∩ Γ(T(ii)TM)

We now prove that geodesics can be seen as integral curves of a spray.

This theorem can be thought of as the motivation for the second con-

dition (43.4) for a spray.

Theorem 43.10 (From Connections to Sprays). Let ∇ be a connec-

tion on M . There is a unique spray S on M which is horizontal with

respect to ∇. Moreover a curve γ in M is a geodesic if and only if γ̇ is

an integral curve of S.

The spray S constructed in Theorem 43.10 is called the geodesic

spray of the connection ∇. The converse to Theorem 43.10 is also

true: if we are given any spray S then there exists a connection ∇ Caution: This connection is not

unique. See the discussion after
Theorem 44.5.

for which S is the geodesic spray of ∇. We prove this next lecture as

Theorem 44.5.

Proof. We prove the result in two steps.

1. Let K : TTM → TM denote connection map of ∇. The require-

ment that S is horizontal is equivalent to asking that K ◦ S = 0. Recall

from Lemma 31.3 that (Dπ,K) : T(ii)TM → TM ⊕ TM is a vector

bundle isomorphism. We can therefore define S by

S(p, ξ) := (Dπ(p, ξ),K)
−1 (

(p, ξ), (p, 0p)
)
.

Then S is smooth, since it is the composition

S = (Dπ,K)−1(idTM , o ◦ π),

where o : M → TM is the zero section. Moreover Dπ ◦ S = idTM

and since Dπ|∆ is an isomorphism, we see that S(p, ξ) is the only

horizontal vector which is mapped to (p, ξ) under Dπ(p, ξ). This shows

there is at most one horizontal vector field on TM which satisfies

the first condition of a spray. Thus if we can prove that S satisfies

(43.5) we will have both existence and uniqueness for S. For this,

using Lemma 31.3 again, it suffices to show that

Dπ ◦ S ◦ µc = Dπ ◦ µ̃c ◦Dµc ◦ S (43.6)

and

K ◦ S ◦ µc = K ◦ µ̃c ◦Dµc ◦ S. (43.7)
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To see (43.6) we observe that since Dπ is a linear map,

Dπ ◦ µ̃c = µc ◦Dπ.

Next, since π ◦ µc = π we have Dπ ◦Dµc = Dπ and thus

Dπ ◦ µ̃c ◦Dµc = µc ◦Dπ.

Thus if we start with (p, ξ) ∈ TM , the right-hand side of (43.6) is

Dπ ◦ µ̃c ◦Dµc ◦ S(p, ξ) = µc ◦Dπ ◦ S(p, ξ)

= µc(p, ξ)

= (p, cξ).

Similarly if we feed (p, ξ) to the left-hand side we get Dπ ◦ S(p, c ξ) =

(p, cξ), and thus (43.6) is proved. To prove (43.7), we again start from

the fact that K is a linear map, and hence

K ◦ µ̃c = µc ◦K.

Moreover K is also a vector bundle morphism along πTM (Theorem

31.5), which means that cf. the second commutative diagram

in (31.5)

K ◦Dµc = µc ◦K.

Thus the right-hand side of (43.7) is equal to

K ◦ µ̃c ◦Dµc ◦ S = µc ◦K ◦Dµc ◦ S
= µc ◦ µc ◦K ◦ S
= 0

since K ◦ S = 0. Similarly the left-hand side of (43.7) is also zero. This

proves that S is a spray.

2. It remains to show that the geodesics of ∇ are exactly the pro-

jections to M of integral curves of S. Let δ be an integral curve of S,

and let γ := π ◦ δ. Since δ̇ is a curve in ∆, δ is parallel along γ. But

γ̇(t) =
d

ds

∣∣∣
s=t

π(δ(s))

= Dπ(δ(t))δ̇′(t)

= Dπ(δ(t))S(δ(t))

= δ(t),

and thus γ̇ is parallel along γ, so that γ is a geodesic. Conversely if

γ is a geodesic then if δ denotes the unique integral curve of S with

δ(0) = γ̇(0) then the argument above shows that π ◦ δ is another

geodesic with the same initial condition as γ, and hence the unique-

ness part of Proposition 43.5 shows that δ = γ̇. This completes the

proof.

We conclude this lecture by defining the geodesic flow of a connec-

tion.
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Definition 43.11. Let ∇ denote a connection on M . The geodesic

flow of ∇ is the maximal flow Φt of the geodesic spray S of ∇.

In general by Theorem 9.10, the geodesic flow is a smooth map

Φ: D→ TM , where D ⊂ R×TM is an open set containing {0}×TM .

We have D = R× TM if and only if ∇ is complete. Explicitly, one has

Φt(p, ξ) =
(
γp,ξ(t), γ̇p,ξ(t)

)
,

where γp,ξ is the unique geodesic from Proposition 43.5 with initial

condition γp,ξ(0) = p and γ̇p,ξ(0) = ξ.



Will J. Merry

LECTURE 44

The Exponential Map of a Spray

In this lecture we define the exponential map associated to a spray.

We warn the reader this is not the same “exponential map” as the one

discussed previously for Lie groups. They are however related in some

cases, as we briefly explain in the bonus section below.

Definition 44.1. Let S denote a spray on M with maximal flow

Φ: D → TM . Let Ep ⊂ TM denote the set of tangent vectors ξ such

that (1, (p, ξ)) ∈ D, and set E =
⋃
p∈M Ep. Thus E consists of those

points (p, ξ) ∈ TM for which the maximal integral curve of S with

initial condition (p, ξ) is defined for at least t = 1.

Since D is open by Theorem 9.10, so is E. Moreover it follows from

the second condition (43.5) from the definition of a spray that

S(p, 0p) = 0p,

and thus 0p is a fixed point of the flow Φt. Thus Φt(p, ξ) is defined for

all t ∈ R. This shows in particular that Ep is never empty: (p, 0p) ∈
Ep.

Definition 44.2. We define the exponential map of S by

exp =: E→M. exp(p, ξ) = π(Φ1(p, ξ)).

Since Φ is smooth (Theorem 9.10), the map exp is smooth. We Compare this to Theorem 12.3: there

we had to work a bit here to prove

smoothness, since we did not start
with a vector field S.

write

expp := exp |Ep : Ep →M.

Theorem 44.3 (Properties of the exponential map). Let S be a spray

on a smooth manifold M with exponential map exp: E→M . Then:

(i) For each p ∈ M , Ep is a star-shaped neighbourhood of 0p. Moreover

if ξ ∈ Ep then

exp(p, tξ) = π ◦ Φt(p, ξ), ∀ t ∈ [0, 1].

(ii) For each p ∈M , expp satisfies This shows that the exponential
map defines an adapted moving
parametrisation about every point of
M , cf. Remark 29.17.

D expp(0p) ◦ J0p = idTpM ,

and so expp has maximal rank m at 0p. Thus expp maps a neigh-

bourhood of 0p in TpM diffeomorphically onto a neighbourhood of

p ∈M .

(iii) For every p ∈ M , the map (π, exp) : E → M ×M has rank 2m at The proof of this statement is non-
examinable.0p, and thus maps a neighbourhood of 0p in TpM diffeomorphically

onto a neighbourhood of (p, p) in M × M . Moreover if o : M →
TM denotes the zero section then there exists a neighbourhood

U of o(M) such that (π, exp) maps U diffeomorphically onto a

neighbourhood of the diagonal in M ×M .
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Proof. We prove the theorem in four steps.

1. In this step we prove part (i). Fix (p, ξ) ∈ TM and let δ : (t−, t+)→
TM denote the maximal integral curve of S with initial condition

(p, ξ). Let µc : TM → TM and µ̃c : TTM → TTM denote scalar

multiplication in the fibres in TM and TTM respectively (cf. (43.3)).

For c > 0 we consider the curve

δc :

(
t−

c
,
t+

c

)
→ TM, δc(t) := µc ◦ δ(ct).

Then

δ̇c(t) = Dµc(δ(ct))
(
c δ̇(ct)

)
= cDµc(δ(ct))S(δ(ct))

= µ̃c ◦Dµc(δ(ct))S(δ(ct))

= S(µc(δ(ct)))

= S(δc(t)),

where the penultimate equation used (43.5). Thus δc is an integral

curve of S. Since δc(0) = c ξ, it follows from uniqueness of integral

curves that

Φt(p, c ξ) = µc ◦ Φct(p, ξ), for ct ∈ (t−, t+).

In particular, if ξ ∈ Ep (so that t+ > 1) then c ξ ∈ Ep for all 0 ≤ c ≤ 1

and moreover

exp(p, c ξ) = π ◦ Φ1(p, c ξ)

= π ◦ µc ◦ Φc(p, ξ)

= π ◦ Φc(p, ξ).

This proves part (i).

2. In this step we prove (ii). Using (i), we have:

D expp(0p)
(
J0p(ξ)

)
=

d

dt

∣∣∣
t=0

expp(0p + tξ)

=
d

dt

∣∣∣
t=0

π ◦ Φt(p, ξ)

= Dπ(p, ξ)S(p, ξ)

= ξ,

Thus D expp(0p) ◦ J0p = idTpM as claimed. The Inverse Function

Theorem 5.10 then completes the proof of (ii).

3. In this step we investigate the map (π, exp) in local coordinates. Remember, this part of the proof is
non-examinable!Let (U, x) denote a chart on M , and let (TM |U , y) denote the induced

chart on TM , so that In Theorem 5.6 this chart is denoted

by x̃.

yi =

xi ◦ π, 1 ≤ i ≤ m,
dxi−m, m+ 1 ≤ i ≤ 2m.

Similarly we let z := (x ◦ pr1, x ◦ pr2), so that (U × U, z) is a chart on

M ×M , with local coordinates

zi =

xi ◦ pr1, 1 ≤ i ≤ n,
xi−m ◦ pr2, m+ 1 ≤ i ≤ 2m.
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By Lemma 4.4, we have We write the summation signs in this

proof to make it clear exactly what

index range we are summing over.

D(π, exp)(0p)

(
∂

∂yj

∣∣∣
0p

)
=

2m∑
i=1

∂

∂yj

∣∣∣
0p

(zi ◦ (π, exp))
∂

∂zi

∣∣∣
(p,p)

For i ≤ m we have zi ◦ (π, exp) = xi ◦ π = yi and for i ≥ m+ 1 we have

zi ◦ (π, exp) = xi−m ◦ exp. Thus if 1 ≤ j ≤ m we have

D(π, exp)(0p)

(
∂

∂yj

∣∣∣
0p

)
=

∂

∂zj

∣∣∣
(p,p)

+

m∑
i=1

∂

∂yj

∣∣∣
0p

(xi ◦ exp)
∂

∂zi+m

∣∣∣
(p,x)

(44.1)

meanwhile if n+ 1 ≤ j ≤ 2n we have

D(π, exp)(0p)

(
∂

∂yj

∣∣∣
0p

)
=

2m∑
i=m+1

∂

∂yj

∣∣∣
0p

(xi−m ◦ exp)
∂

∂zi

∣∣∣
(p,p)

. (44.2)

We now claim that for m+ 1 ≤ j ≤ 2m one has

D exp(0p)

(
∂

∂yj

∣∣∣
0p

)
=

∂

∂xj−m

∣∣∣
x
. (44.3)

Indeed, if ιp : TpM ↪→ TM denotes the inclusion then One way to see this is to consider the

curve εj in TpM given by

εj(t) := ιp

(
t

∂

∂xj−m

∣∣∣
x

)
.

The left-hand side of (44.4) is ε̇j(0)

computed using (4.2), and the right-
hand side of (44.4) is ε̇j(0) computed

using (4.1).

∂

∂yj

∣∣∣
0p

= Dιp(0p) ◦ J0p

(
∂

∂xj−m

∣∣∣
p

)
(44.4)

Since expp = exp ◦ιp, (44.3) follows from (44.4) and part (ii). Now

inserting (44.3) into (44.2) and simplifying tells us that for m + 1 ≤
j ≤ 2m we have

D(π, exp)(0p)

(
∂

∂yj

∣∣∣
0p

)
=

∂

∂zj

∣∣∣
(p,p)

(44.5)

4. We now complete the proof of (iii). By (44.1) and (44.5),

the matrix of D(π, exp)(0p) with respect to the bases { ∂
∂yj

∣∣
0p
} and

{ ∂
∂zi

∣∣
(p,p)
} is of the form

D(π, exp)(0p) =

(
id 0

∗ id

)
,

which has rank 2m. Thus (π, exp) is a diffeomorphism on a neighbour- Namely: Suppose X and Y are locally

compact, Hausdorff, and paracompact
topological spaces and f : X → Y is
a local homeomorphism. If A ⊂ X

is any closed set such that f |A is a

homeomorphism then there exists an
open set U containing A such that

f |U is also a homeomorphism.

hood of (p, x by the Inverse Function Theorem 5.10. The final claim

that (π, exp) is a diffeomorphism on a neighbourhood the zero-section

is a formal point-set topological consequence of what we have already

proved.

Remark 44.4. We will use part (ii) of Theorem 44.3 many times

throughout the rest of the course. The stronger statement given by

part (iii) will only be needed once: during our proof that the injectiv-

ity radius of a compact manifold is positive (see Proposition ??).

We now prove a converse to Theorem 43.10.

Theorem 44.5 (From Sprays to Connections). Let M be a smooth

manifold and let S be a spray on M . There exists a connection ∇ on

M such that S is the geodesic spray of ∇.



4

Warning: This theorem is not asserting that there exists

a unique connection ∇ for which S is the geodesic spray of

∇. In general, there can be many connections with the same

geodesics (and hence the same geodesic spray). This annoyance

will be rectified in Corollary 45.10 by restricting to torsion-free

connections..

Proof. We prove the result in four steps.

1. In this step we define for each (p, ξ) ∈ TM a subspace ∆(p,ξ) ⊂
T(p,ξ)TM , which will form our desired connection distribution ∆ ⊂
TM . Fix p ∈M . For any ζ ∈ TpM , the curve

γζ(t) := expp(tζ).

is well-defined on some interval about 0 and satisfies γζ(0) = p. Now

let ξ ∈ TpM denote another tangent vector at p (possibly equal to ζ).

We define a section ρξ,ζ ∈ Γγζ (TM) by Pay attention to the order of ξ and ζ

on the right-hand side!

ρξ,ζ(t) := D expp(tζ)
(
Jtζ(ξ)

)
. (44.6)

Then by part (ii) of Theorem 44.3, we have

ρξ,ζ(0) = ξ,

and thus in particular

γ̇ζ(0) = ρζ,ζ(0) = ζ. (44.7)

We define our connection ∆ by declaring that these sections are all

parallel:

∆(p,ξ) := {ρ̇ξ,ζ(0) | ζ ∈ TpM} ⊂ T(p,ξ)TM, (44.8)

and then set as usual

∆ :=
⊔

(p,ξ)∈TM

∆(p,ξ).

2. We now prove that ∆ is a preconnection on TM . This proof

is similar to the proof of Step 1 of Theorem 30.1, but simpler. Fix

(p, ξ) ∈ TM and consider the smooth map

Cξ : Ep × [0, 1]→ TM, Cξ(ζ, t) := ρξ,ζ(t).

Since Cξ(ζ, t) = Cξ(tζ, 1) we have

ρ̇ξ,ζ(0) =
d

dt

∣∣∣
t=0

Cξ(tζ, 1)

= DCξ(0p, 1)
(
J0p(ζ), 0

)
,

which shows that ∆(p,ξ) is the image of a linear map TpM → T(p,ξ)TM ,

and hence is a vector space of dimension at most m. But since

Dπ(p, ξ)ρ̇ξ,ζ(0) =
d

dt

∣∣∣
t=0

π(ρξ,ζ(t))

= γ̇ζ(0)

= ζ
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by (44.7), we see that Dπ(p, ξ) maps ∆(p,ξ) surjectively onto TpM .

Thus ∆(p,ξ) is a vector space of dimension m which is mapped iso-

morphically onto TpM by Dπ(p, ξ). The construction of vector bundle

charts for ∆ is similar (but again, easier) to Step 3 of Theorem 30.1,

and we omit the details. We have thus proven that ∆ is a preconnec-

tion.

3. In this step we show that ∆ is a genuine connection. Let

µc : (p, ξ) 7→ (p, cξ) denote the usual scalar multiplication on TM .

We compute:

Dµc(p, ξ)ρ̇ξ,ζ(0) =
d

dt

∣∣∣
t=0

µc(ρξ,ζ(t))

=
d

dt

∣∣∣
t=0

D expp(tζ)
(
Jtζ(c ξ)

)
= ρ̇cξ,w(0).

This shows that Dµc(p, ξ)
(
∆(p,ξ)

)
⊆ ∆(p,cξ). Since π ◦ µc = π, we have

Dπ(p, c ξ) ◦ Dµc(p, ξ) = Dπ(p, ξ), and thus it follows that Dπ(p, c ξ)

maps both Dµc(p, ξ)
(
∆(p,ξ)

)
and ∆(p,cξ) isomorphically onto TpM ,

and thus we must have equality:

Dµc(p, ξ)
(
∆(p,ξ)

)
= ∆(p,cξ).

4. It remains to show that S is the geodesic spray of ∆. Since

S is a spray and there is at most one horizontal spray with respect

to a given connection by Theorem 43.10), it suffices to show that

S(p, ξ) ∈ ∆(p,ξ) for each (p, ξ) ∈ TM . For this, let δ denote the integral

curve of S with initial condition (p, ξ), and let γ := π ◦ δ. Then the

argument from the last bit of the proof of Theorem 43.10 shows that

δ = γ̇, and hence

δ(s) = γ̇(s)

=
d

dt

∣∣∣
t=0

γ(s+ t)

=
d

dt

∣∣∣
t=0

expp(sξ + tξ)

= D expp(sξ)
(
Jsξ(ξ)

)
= ρξ,ξ(s).

Therefore

S(p, ξ) = δ̇(0) = ρ̇ξ,ξ(0) ∈ ∆(p,ξ).

This completes the proof.

Bonus Material for Lecture 44

In general there is no relation between the two exponential maps

(apart from sharing similar properties), and thus the terminology is

a bit unfortunate.
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Definition 44.6. A metric ρ on a Lie group G is said to be left- For Lie groups, we can’t use the letter

“g” to denote a Riemannian metric,

since g is reserved for an element of
the group. Thus we use ρ instead.

invariant if

l∗gρ = ρ, ∀ g ∈ G,

and right-invariant if

r∗gρ = ρ, ∀ g ∈ G.

A Riemannian metric is bi-invariant if it is both left and right-

invariant.

For general Lie groups, such a metric need not exist. In the com-

pact case, however, we have:

Theorem 44.7. Let G be a compact Lie group. Then there exists a

bi-invariant metric ρ on M .

More generally, any connected semi-simple or reductive Lie group

admits a bi-invariant pseudo-Riemannian metric. This is defined

in the same way as a Riemannian metric, only instead of requiring ρ

to be positive definite, we require ρ to have some fixed mixed signa-

ture.

Theorem 44.8. Let G be a Lie group and let ρ be a bi-invariant

(pseudo)-Riemannian metric on G. Let S denote the geodesic spray

of the Levi-Civita connection of ρ. Then when restricted to e ∈ G, cf. Theorem 46.1.

the exponential map of S agrees with the exponential map of the Lie

group itself.
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LECTURE 45

Torsion-free Connections

As we remarked last lecture, the correspondence between connections

on M and sprays on M is not bijective, since different connections can

have the same geodesics (and hence also the same geodesic spray).

The aim of this lecture is to introduce a special type of connection,

called a torsion-free connection, which is uniquely determined by its

geodesics.

Recall from Problem N.1 that if ∇1 and ∇2 are two connections on

M then their difference

A(X,Y ) := ∇1
XY −∇2

XY

is an element of T1,2(M), i.e. a tensor of type (1, 2).

Lemma 45.1. Two connections ∇1 and ∇2 have the same geodesic

spray if and only if their difference A is skew-symmetric.

Proof. From the proof of Theorem 43.10, if Si is the geodesic spray of

∇i then

Si(p, ξ) = Dπ(p, ξ)|−1
∆i|(p,ξ)(ξ),

where ∆i ⊂ TTM is the connection distribution of ∇i. By part (ii) of

Problem N.1, we have

∆2|(p,ξ) =
{
η + Jξ

(
A(Dπ(p, ξ)η, ξ)

)
| η ∈ ∆1|(p,ξ)

}
,

and hence

S2(p, ξ) = Dπ(p, ξ)|−1
∆2|(p,ξ)(ξ)

= Dπ(p, ξ)|−1
∆1|(p,ξ)(ξ) + Jξ(A(ξ, ξ))

= S1(p, ξ) + Jξ(A(ξ, ξ)).

Thus S1 = S2 if and only if A(ξ, ξ) = 0 for all ξ, i.e. that A is skew-

symmetric.

This motivates the following definition.

Definition 45.2. Let ∇ be a connection on M . The torsion tensor

T∇ of ∇ is the tensor of type (1, 2) defined by

T∇(X,Y ) := ∇XY −∇YX − [X,Y ], X, Y ∈ X(M).

As with the curvature tensor, merely calling T∇ a tensor does not

make it one. In contrast to Theorem 33.14 however, the verification

that T∇ really is a tensor is much easier.

Lemma 45.3. The torsion tensor T∇ is an alternating tensor.
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Proof. By Theorem 21.5 we need only check that T∇ is C∞(M)-linear

in both variables. Take X,Y ∈ X(M) and f ∈ C∞(M). Then

T∇(fX, Y ) = ∇fXY −∇Y (fX)− [fX, Y ]

= f∇XY − Y (f)X − f∇YX − f [X,Y ] + Y (f)X

= fT∇(X,Y ) + 0,

where we used Problem D.5 and the now familiar properties of a co-

variant derivative operator (parts (ii) and (iv) of Definition 31.6). It is

clear that T∇ is alternating, and thus T∇ is also C∞(M)-linear in the

second variable.

Definition 45.4. A connection ∇ is said to be torsion-free if T∇ =

0.

Remark 45.5. Many textbooks call a torsion-free connection a “sym-

metric” connection. The motivation for this is the following: if ∇ is

a torsion-free connection then the Christoffel symbols Γkij associated

to any chart x on M (cf. Definition 43.1) are symmetric in i and j.

Indeed, given any connection ∇ and any chart (U, x) on M then the

local expression for T∇ on U with respect to x is (cf. Definition 21.1):

T∇ = T kij ∂k ⊗ dxi ⊗ dxj

where the T kij : U → R are the smooth functions given by

T kij = dxk
(
T (∂i, ∂j)

)
.

But since [∂i, ∂j ] = 0 by Problem D.4, it follows that

T kij = Γkij − Γkji.

In particular, T∇ = 0 if and only if for every local coordinate system

(xi) one has Γkij = Γkji.

Remark 45.6. It is easy to turn any connection into a torsion-free

one. Indeed, if ∇ is a connection then ∇1 := ∇− 1
2T
∇ is another con-

nection by Problem N.1, and it follows immediately from the definition

that T∇1 = 0.

The next theorem gives us yet another way to view connections:

namely, specifying a connection on M is the same thing as specifying

the geodesics and the torsion tensor.

Theorem 45.7. Let ∇1 and ∇2 denote two connections on M . Then

∇1 = ∇2 if and only if ∇1 and ∇2 have the same geodesics and the

same torsion tensors.

Proof. Let A := ∇1 − ∇2, and decompose A into its symmetric and

alternating parts: A = As +Aa, i.e.

As(X,Y ) :=
1

2
(A(X,Y ) +A(Y,X)) ,

Aa(X,Y ) :=
1

2
(A(X,Y )−A(Y,X))
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In Lemma 45.1 we already showed that As = 0 if and only if ∇1 and

∇2 have the same geodesics. Thus if suffices to show that Aa = 0 if

and only if T∇
1

= T∇
2

. But this is immediate from:

2Aa(X,Y ) = A(X,Y )−A(Y,X)

= ∇1
XY −∇2

XY −∇1
YX +∇2

YX

= T∇
1

(X,Y )− T∇
2

(X,Y ).

This completes the proof.

If ϕ : M → N is a smooth map and ∇ is a connection on N , then

the pullback connection (also denoted by ∇) on M is a map

∇ϕ : X(M)× Γϕ(TN)→ Γϕ(TN).

If X is a vector field in M then p 7→ Dϕ(p)X(p) is a well-defined

element of Γϕ(TN), which we write simply as Dϕ(X). Thus the ex- If ϕ is a diffeomorphism then ϕ?X =

Dϕ(X) ◦ ϕ−1 in this notation.pression

T∇ϕ : X(M)× X(M)→ Γϕ(TN)

given by

T∇ϕ (X,Y ) := ∇ϕX(Dϕ(Y ))−∇ϕY (Dϕ(X))−Dϕ[X,Y ]

is well defined.

Since T∇ is a point operator in both variables, the expression

T∇(Dϕ(X), Dϕ(Y )) is also a well defined section along ϕ. The next

result is the analogue of Proposition 35.9 for the torsion tensor.

Proposition 45.8. Let ∇ denote a connection on a smooth manifold

N , and let ϕ : M → N denote a smooth map. Then for any X,Y ∈
X(M), one has

T∇(Dϕ(X), Dϕ(Y )) = T∇ϕ (X,Y )

as elements of Γϕ(TN).

The proof of Proposition 45.8 is almost identical to that of Proposi-

tion 35.9, and we leave the details to you. Theorem 44.5 constructed a

connection from a spray. In fact, this connection is torsion-free, as we

now prove.

Proposition 45.9. Let S denote a spray on M , and let ∇ denote the

connection constructed in the proof of the Theorem 44.5. Then ∇ is

torsion-free.

This proof is non-examinable.

Proof. Fix p ∈ M and ξ, ζ ∈ TpM . We will prove that T∇(ξ, ζ) = 0 in

two steps.

1. In this step we derive an expression for T∇(ξ, ζ). There is a

well-defined vector field J (ξ) ∈ X(TpM) defined by This makes sense: if ζ ∈ TpM then

Jζ(ξ) ∈ TζTpM .

J (ξ)(ζ) := Jζ(ξ) =
d

dt

∣∣∣
t=0

ζ + tξ.
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Let exp denote the exponential map of S with domain E ⊂ TM , and

as usual let expp : Ep → M denote the restriction of exp to the fibre

over p. Then for any ξ ∈ TpM , we may regard J (ξ) as a vector field

on Ep, and hence (using the notation above), D expp(J (ξ)) is a vector

field along expp, which we abbreviate by Xξ. Moreover by part (ii) of

Theorem 44.3, this vector field satisfies

Xξ(0p) = D expp(0p)(J0p(ξ)) = ξ.

By Proposition 45.8, we have

T∇(Xξ,Xζ) = T∇expp
(J (ξ),J (ζ)),

and evaluating both sides at 0p tells us that

T∇(ξ, ζ) = ∇expp
ξ Xζ −∇

expp
ζ Xξ − [Xξ,Xζ ](0p). (45.1)

2. In this step we compute the right-hand side of (45.1). Since

J (ξ) and J (ζ) are constant vector fields, the Lie bracket [J (ξ),J (ζ)] This is a Lie bracket of vector fields

on the vector space TpM .is zero by Problem D.4. Thus by Problem D.6 we also have [Xξ,Xζ ] =

0. Now let ∆ denote the connection distribution from (44.8) and let

K : TTM → TM denote the connection map of ∇. Then by definition

(cf. Theorem 31.8) one has

∇expp
ξ Xζ = K

(
DXζ(0p)(J (ξ)(0p))

)
= K

(
d

dt

∣∣∣
t=0

D expp(tξ)(Jtξ(ζ))

)
.

Using the notation from the proof of Theorem 44.5, this last term is cf. (44.6) – pay attention to the order
of ξ and ζ!exactly K(ρ̇ζ,ξ(0)). Since ρ̇ζ,ξ(0) ∈ ∆(p,ζ) by definition and ∆ = kerK

we conclude that

∇expp
ξ Xζ = 0.

Similarly ∇expp
ζ Xξ = 0. Thus by (45.1) we have T∇(ξ, ζ) = 0. This

completes the proof.

This gives us the following strengthening of Theorem 44.5.

Corollary 45.10. Let S be a spray on M and let T be an alternating

tensor of type (1, 2). There exists a unique connection on M with

geodesic spray S and torsion tensor T .

Proof. Let ∇ denote the connection on M given by Theorem 44.5.

Then ∇ has geodesic spray S and ∇ is torsion-free by Proposition

45.9. The desired connection is then given by ∇1 := ∇ + 1
2T (apply

Remark 45.6 backwards). This connection is unique by Theorem 45.7.

One of the most useful consequences of Corollary 45.10 is that if we

start with a torsion-free connection we now have an explicit formula

for the horizontal distribution in terms of the exponential map of the

geodesic spray of ∇ (i.e. (44.8)). Here is an application of this, which

will aid our forthcoming computations in Riemannnian geometry.
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Proposition 45.11. Let ∇ be a torsion-free connection on M . Fix

p ∈ M and let {ξ1, . . . , ξm} be a basis of TpM . There exists a chart

(U, x) on M about p such that:

(i) x(p) = 0,

(ii) ∂i|p = ξi,

(iii) ∇ζ∂i = 0 for all ζ ∈ TpM ,

(iv) ∇∗ζdxi = 0 for all ζ ∈ TpM (where ∇∗ is the induced connection on

T ∗M).

Note that by (iii) we have that in these coordinates the Christoffel

symbols vanish at p: Γkij(p) = 0 for all i, j, k.

Proof. Let ` : TpM → Rm denote the linear isomorphism determined

by `ξi = ei. Let exp denote the exponential map of the geodesic spray

of ∇. Let V ⊂ TpM to be a neighbourhood of 0p on which expp is a Such V exists by part (ii) of Theorem

44.3.diffeomorphism. Let U := expp(V ) and define

x := ` ◦ expp |−1
V .

Then (i) is clear. By construction we have

∂i| expp(ξ) = D expp(ξ) ◦ Jξ(ξi),

and so taking ξ = 0 and applying part (ii) of Theorem 44.3 gives (ii).

To prove (iii), we consider the curve ρ(t) = tζ in TpM . Then thinking

of ∂i as a smooth map U → TU , we have

D∂i(p)ζ =
d

dt

∣∣∣
t=0

D expp(tζ) ◦ Jtζ(ξi)

which belongs to the connection distribution ∆ of ∇ at (p, ξi) by

(44.8). Thus if K denotes the connection map of ∇ then

∇ζ∂i = K(D∂i(p)ζ) = 0

as kerK = ∆. This proves property (iii). Finally property (iv) is

immediate from (iii) and the definition (Problem M.3) of the induced

connection on T ∗M , since dxi(∂j) = δij .

A torsion-free connection enjoys some additional symmetry proper-

ties of its curvature tensor.

Proposition 45.12. Let ∇ be a torsion-free connection on M with

curvature tensor R∇. Then for all X,Y, Z ∈ X(M), one has:

(i) R∇(X,Y )(Z) +R∇(Y,Z)(X) +R∇(Z,X)(Y ) = 0.

(ii)
(
∇XR∇

)
(Y,Z) +

(
∇YR∇

)
(Z,X) +

(
∇ZR∇

)
(X,Y ) = 0.

Proof. Since R∇ is a point operator in all three variables, it is suffi-

cient to prove the result in the special case where [X,Y ] = [Y, Z] = In fact, it would suffice to prove the
result in the special case X = ∂i,

Y = ∂j and Z = ∂k, although the
proof would be no simpler.
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[Z,X] = 0. Then ∇X(Y ) = ∇Y (X), ∇Y (Z) = ∇Z(Y ), and

∇Z(X) = ∇X(Z), and hence

R∇(X,Y )(Z) +R∇(Y,Z)(X) +R∇(Z,X)(Y )

= ∇X∇Y Z −∇Y∇XZ +∇Y∇ZX
−∇Z∇YX +∇Z∇XY −∇X∇ZY

= ∇X
(
∇Y Z −∇ZY

)
+∇Y

(
∇ZX −∇XZ

)
+∇Z

(
∇XY −∇YX

)
= 0 + 0 + 0.

This proves (i). The proof of (ii) is on Problem Sheet P.

Remark 45.13. In the literature the two identities (i) and (ii) are

often somewhat confusingly referred to as the “First Bianchi Identity”

and the “Second Bianchi Identity” respectively. We will avoid this

nomenclature since we already have two “Bianchi Identities” (Theorem

36.21 and (41.2) from Theorem 41.6)!

Bonus Material for Lecture 45

In this bonus section we briefly survey how the torsion-free condition

affects the possible holonomy groups that can arise. As explained at

the end of Lecture 42, the general question as to which Lie groups

can arise as the holonomy group of a connection on a given principal

bundle is not very interesting (see Remark 42.10). If however we work

with torsion-free connections, this dramatically changes.

Consider the following question:

• Let M be a connected smooth manifold. What Lie subgroups

G ⊂ GL(m) can occur as possible holonomy groups for torsion-

free connections on M?

This is an extremely difficult problem in general, and is an

open problem for many manifolds M . We can simplify things

by turning the question on its head and starting with the Lie

group.

• Let G ⊂ GL(m) be a Lie subgroup. Does there exist any

smooth manifold M and a torsion-free connection ∇ on M

such that G is the holonomy group of ∇?

This is still very hard, but a complete classification is (mostly) un-

derstood. We conclude this lecture by outlining why. The key starting

point is the two additional symmetries from Proposition 45.12.

Definition 45.14. Let V be a vector space and suppose G is a Lie

subgroup of GL(V ) with Lie algebra g ⊂ gl(V ). We define two sub-
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spaces as follows:

b :=
{
r ∈

∧2
V ∗⊗ g | r(u, v)(w) + r(v, w)(u) + r(w, u)(v) = 0, ∀u, v, w ∈ V

}
,

and

c := {ρ ∈ V ∗⊗ b | ρ(u)(v, w) + ρ(v)(w, u) + ρ(w)(u, v) = 0, ∀u, v, w ∈ V }

Finally define

B(g) := {r(u, v) | r ∈ b, u, v ∈ V } .

Definition 45.15. We say that G ⊂ GL(V ) is a Berger subgroup if

its Lie algebra g satisfies:

(i) c 6= {0}.

(ii) B(g) = g.

The next result gives a necessary condition for a Lie subgroup to

occur as the holonomy group of a torsion-free connection.

Theorem 45.16. Let M be connected manifold and suppose G ⊂ For the purposes of our discussion

here, just ignore these two conditions.
Defining them precisely would take us

too far afield, and it is not necessary

to understand the general “idea”.

GL(m) is a Lie subgroup. Assume that G is irreducible and M is

not locally symmetric. If G is the holonomy group of a torsion-free

connection then G is necessarily a Berger group.

Proof (sketch). The idea is very simple: if G is the holonomy group

of a torsion-free connection ∇, then the curvature tensor defines an

element of c by Proposition 45.12. Thus c is not zero. On the other

hand, the Ambrose-Singer Holonomy Theorem 35.6 tells us that B(g)

is all of g.

Theorem 45.16 allows us to rule out many Lie groups (i.e. all the

non-Berger groups). This however is merely the “easy” half of an-

swering the second question posed above – to show that a Lie group

really does appear as a holonomy group, one needs to explicitly con-

struct a connection. Unlike Theorem 42.8, there is no easy way to

construct a connection “by hand”. In 1999, a complete classification

of those groups that could appear was obtained by Merkulov and

Schwachhöfer. The list is rather long, and we will not attempt to enu-

merate it here.

We remark however that the list gets much shorter if we require

that ∇ is not only torsion-free, but in addition is Riemannian with

respect to some Riemannian metric on M (in other words, that ∇ is

a Levi-Civita connection with respect to some Riemannian metric on

M). The holonomy groups that can arise for such ∇ are the so-called

Riemannian holonomy groups. We will come back to this in the

bonus section of the next lecture.



Will J. Merry

LECTURE 46

The Levi-Civita Connection

In this lecture we begin our study of Riemannian geometry proper,

starting with the construction of the famous Levi-Civita connection of

a Riemannian manifold. Let M be a smooth manifold, and suppose

g = 〈·, ·〉 is a Riemannian metric on M (i.e. a Riemannian metric

on the vector bundle TM). Recall a connection ∇ on M is said to

be Riemannian with respect to g if g is parallel with respect to the

induced connection on T ∗M ⊗ T ∗M : ∇g = 0. By Proposition 37.12

this is equivalent to asking that the Ricci Identity holds:

X〈Y,Z〉 = 〈∇XY,Z〉+ 〈Y,∇XZ〉, ∀X,Y, Z ∈ X(M). (46.1)

In Proposition 37.14 we proved that metric connections always ex-

ist. Meanwhile Theorem 44.5 (together with Proposition 45.9) proved

that torsion-free connections exist. But can we satisfy both conditions

simultaneously? The following somewhat grandiosely named theo-

rem asserts that the answer is yes in the best possible way: there is a

unique connection on M with both these properties.

Theorem 46.1 (The Fundamental Theorem of Riemannian Geom-

etry). Let g = 〈·, ·〉 be a Riemannian metric on M . There exists a

unique connection ∇ on M which is both torsion-free and metric with

respect to g. We call ∇ the Levi-Civita connection of g.

Proof. We first deal with uniqueness. Suppose that ∇ is a metric

torsion-free connection on M . Let X,Y, Z ∈ X(M). We combine the

Ricci Identity (46.1) with the torsion-free condition:

〈∇XY,Z〉 − 〈∇YX,Z〉 = 〈[X,Y ], Z〉,

to obtain

X〈Y,Z〉+ Y 〈Z,X〉 − Z〈X,Y 〉 = 〈∇XY,Z〉+ 〈Y,∇XZ〉+ 〈∇Y Z,X〉
+ 〈Z,∇YX〉 − 〈∇ZX,Y 〉 − 〈X,∇ZY 〉

= 2〈∇XY, Z〉 − 〈[X,Y ], Z〉
+ 〈[X,Z], Y 〉+ 〈[Y,Z], X〉,

and hence

〈∇XY,Z〉 =
1

2

(
X〈Y,Z〉+ Y 〈Z,X〉 − Z〈X,Y 〉 (46.2)

− 〈[Y, Z], X〉+ 〈[Z,X], Y 〉+ 〈[X,Y ], Z〉
)
.

With this in mind, let us define a function

ωX,Y : X(M)→ C∞(M)

by declaring that ωX,Y (Z) is the right-hand side of (46.2). We claim

that ωX,Y is actually a one-form on M . By Theorem 21.5 we must
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show that ωX,Y is C∞(M)-linear. For this we compute:

ωX,Y (fZ) =
1

2

(
X〈Y, fZ〉+ Y 〈fZ,X〉 − fZ〈X,Y 〉

− 〈[Y, fZ], X〉+ 〈[fZ,X], Y 〉+ 〈[X,Y ], fZ〉
)

= fωX,Y Z +
1

2

(
X(f)〈Y,Z〉+ Y (f)〈Z,X〉

−X(f)〈Y,Z〉 − Y (f)〈X,Z〉
)

= fωX,Y Z + 0.

Since ωX,Y is a one-form, by Problem N.5 there is a unique well-

defined vector field (ωX,Y )] on M obtained via the musical isomor-

phism with respect to g. Then

∇XY = (ωX,Y )]. (46.3)

Since (ωX,Y )] is defined independently of ∇, this establishes unique-

ness.

For existence, we simply turn this argument on its head and define

∇ by (46.3). For this to make sense we need to prove that does indeed

define a torsion-free connection which is Riemannian with respect to

g. This is a series of straightforward, but rather lengthy computations.

We must verify:

(i) ∇fXY = f∇XY ,

(ii) ∇X(fY ) = X(f)Y + f∇XY ,

(iii) ∇XY −∇YX = [X,Y ],

(iv) 〈∇XY,Z〉+ 〈Y,∇XZ〉 = X〈Y,Z〉,

as the remaining conditions are all trivial.

For (i), observe that

2〈∇fXY,Z〉 = fX〈Y,Z〉+ Y 〈Z, fX〉 − Z〈fX, Y 〉
− 〈[Y,Z], fX〉+ 〈[Z, fX], Y 〉+ 〈[fX, Y ], Z〉

= f
(
X〈Y, Z〉 − Y 〈Z,X〉 − Z〈X,Y 〉

− 〈[Y,Z], X〉+ 〈[Z,X], Y 〉+ 〈[X,Y ], Z〉
)

+ Y (f)〈Z,X〉 − Z(f)〈X,Y 〉+ Z(f)〈X,Y 〉 − Y (f)〈X,Z〉
= 2f〈∇XY,Z〉+ 0.

To prove (ii), we see that

2〈∇X(fY ), Z〉 = X〈fY, Z〉+ fY 〈Z,X〉 − Z〈X, fY 〉
− 〈[fY, Z], X〉+ 〈[Z,X], fY 〉+ 〈[X, fY ], Z〉

= f
(
X〈Y,Z〉 − Y 〈Z,X〉 − Z〈X,Y 〉

− 〈[Y, Z], X〉+ 〈[Z,X], Y 〉+ 〈[X,Y ], Z〉
)

+X(f)〈Y,Z〉 − Z(f)〈X,Y 〉+ Z(f)〈Y,X〉+X(f)〈Y, Z〉
= 2f〈∇XY, Z〉+ 2X(f)〈Y,Z〉.
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To prove (iii), we compute

2〈∇XY,Z〉 − 2〈∇YX,Z〉 = X〈Y,Z〉+ Y 〈Z,X〉 − Z〈X,Y 〉
− 〈[Y, Z], X〉+ 〈[Z,X], Y 〉+ 〈[X,Y ], Z〉
− Y 〈X,Z〉 −X〈Z, Y 〉+ Z〈Y,X〉
+ 〈[X,Z], Y 〉 − 〈[Z, Y ], X〉 − 〈[Y,X], Z〉

=− 〈[Y, Z], X〉+ 〈[Z,X], Y 〉+ 〈[X,Y ], Z〉
− 〈[Z,X], Y 〉+ 〈[Y, Z], X〉+ 〈[X,Y ], Z〉

= 2〈[X,Y ], Z〉,

and hence ∇XY −∇YX = [X,Y ].

Finally, to prove (iv) we compute

2〈∇XY,Z〉+ 2〈Y,∇XZ〉 = X〈Y,Z〉+ Y 〈Z,X〉 − Z〈X,Y 〉
− 〈[Y, Z], X〉+ 〈[Z,X], Y 〉+ 〈[X,Y ], Z〉
+X〈Z, Y 〉+ Z〈Y,X〉 − Y 〈X,Z〉
− 〈[Z, Y ], X〉+ 〈[Y,X], Z〉+ 〈[X,Z], Y 〉

= 2X〈Y, Z〉.

This completes the proof of existence.

We can use (46.2) to express the Levi-Civita connection in local

coordinates. Suppose (U, x) is a chart on M . Then we can write

g = gij dx
i ⊗ dxj

on U , where

gij : U → R, gij := 〈∂i, ∂j〉

Note that the matrix (gij(p))1≤i,j≤n is symmetric and positive definite

for every x ∈ U .

Lemma 46.2. Let (M, g) be a Riemannian manifold and let ∇ de-

note the Levi-Civita connection of g. Let (U, x). Then the Christoffel

symbols of ∇ are given by

Γkij =
1

2
gkl (∂igjl + ∂jgli − ∂lgij) ,

where (gij)1≤i,j≤m is the inverse matrix to (gij)1≤i,j≤m.

Proof. Firstly we have (this is true for any connection)

2〈∇∂i∂j , ∂l〉 = 2〈Γkij∂k, ∂l〉 = 2Γkijgkl.

Now by (46.2) we have

2〈∇∂i∂j , ∂l〉 = ∂i〈∂j , ∂l〉+ ∂j〈∂l, ∂i〉 − ∂l〈∂i, ∂j〉
= ∂igjl + ∂jgli − ∂lgij ,

since the Lie bracket terms [∂i, ∂j ] all vanish by Problem D.4. Thus

2Γkijgkl = ∂igjl + ∂jgli − ∂lgij ,
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Multiply both sides by 1
2g
pl and sum over l to get The summation over l is forced by the

Einstein Summation Convention.

Γkijgklg
pl =

1

2
gpl (∂igjl + ∂jgli − ∂lgij) . (46.4)

But

gklg
lp = δpk.

(this is the definition of the inverse matrix) and hence the left-hand

side of (46.4) is

Γkijgklg
pl = Γkijδ

p
k.

Thus in particular taking p = k on the right-hand side of (46.4) gives

Γkij =
1

2
gkl (∂igjl + ∂jgli − ∂lgij)

as desired.

Corollary 46.3. Let (M, g) be a Riemannian manifold and let ∇
denote the Levi-Civita connection of g. For any point p ∈ M there

exists a chart (U, x) about p such that {∂i|p} is an orthonormal basis

at p and such that the Christoffel symbols vanish at p: Γkij(p) = 0 for

all i, j, k.

Such coordinates are called normal coordinates at p.

Proof. Choose an orthonormal basis {ξi} of TpM and apply Corollary

45.11.

Remark 46.4. One can alternatively characterise normal coordinates

in terms of the first derivatives of the metric. Indeed, in any local

coordinates (xi) one has

∂kgij = ∂k〈∂i, ∂j〉
= 〈∇∂k∂i, ∂j〉+ 〈∂i,∇∂k∂j〉
= 〈Γlki∂l, ∂j〉+ 〈∂i,Γlkj∂l〉
= Γlkiglj + Γlkjgil,

where the second line used the Ricci identity (46.1). Thus coordinates

(xi) are normal at p if and only if {∂i|p} is an orthonormal basis of

TpM and

∂kgij(p) = 0, ∀ i, j, k. (46.5)

Remark 46.5. If (U, x) are normal coordinates at p and ξ = ai ∂i|p is

a tangent vector in TpM then the unique geodesic γp,ξ with γp,ξ(0) =

p and γ̇p,ξ(0) = ξ is given by

γp,ξ(t) = x−1(ta1, . . . , tam),

for all t sufficiently small. This follows from the proof of Proposition

45.11.

The next result shows how the Levi-Civita connection behaves

nicely with respect to pullbacks.
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Proposition 46.6. Let (N, g) be a Riemannian manifold, and let ∇
denote the Levi-Civita connection. Suppose ϕ : M → N is a smooth

map. Then for X,Y, Z ∈ X(M) the covariant derivative operator ∇ϕ

satisfies

〈∇ϕX(Dϕ(Y )), Dϕ(Z)〉 =
1

2

(
X〈Dϕ(Y ), Dϕ(Z)〉+ Y 〈Dϕ(Z), Dϕ(X)〉

− Z〈Dϕ(X), Dϕ(Y )〉 − 〈Dϕ([Y,Z]), Dϕ(X)〉

+ 〈Dϕ([Z,X]), Dϕ(Y )〉+ 〈Dϕ([X,Y ]), Dϕ(Z)〉
)
.

Proof. The pullback connection satisfies the Ricci Identity by Corol-

lary 37.13. Thus the claim follows from the uniqueness of the Levi-

Civita connection on (N, g) and Proposition 45.8.

In Proposition 46.6 the domain M of ϕ is not endowed with a Rie-

mannian metric (only the target N is). We now consider the case

where both M and N are equipped with metrics. Recall from Defi-

nition 37.7 that a vector bundle morphism between two Riemannian

vector bundles is said to be an isometric vector bundle morphism if it

preserves the Riemannian metrics. The following definition specialises

this to Riemannian metrics on manifolds.

Definition 46.7. Let (M, g) and (N,h) be Riemannian manifolds. A

smooth map ϕ : M → N is said to be isometric if Dϕ : TM → TN

is an isometric vector bundle morphism in the sense of Definition 37.7.

Explicitly, if we write 〈·, ·〉 for (both) metrics, then ϕ is isometric if

and only if

〈ξ, ζ〉 = 〈Dϕ(p)ξ,Dϕ(p)ζ〉 , ∀ p ∈M, ξ, ζ ∈ TpM.

Equivalently, this means that the metric g is equal to the pullback

tensor ϕ∗h from Definition 21.8. Note that any isometric map is neces-

sarily an immersion.

Note that an isometric map is necessarily an immersion. An isomet-

ric diffeomorphism is called an isometry.

Definition 46.8. We denote by Iso(M, g) ⊂ Diff(M) the subgroup of

isometries.

Isometries are much “rarer” than diffeomorphisms. This is encapsu-

lated by the following theorem, which sadly goes beyond the scope of

the course. There is another theorem in Rie-

mannian Geometry due to Myers
and Steenrod. We state this result in

Lecture ?? and label it the “(Easy)

Myers-Steenrod Theorem”. Here
“easy” should be understood in a
relative sense.

Theorem 46.9 (The (Hard) Myers-Steenrod Theorem). Let (M, g) be

a Riemannian manifold with at most finitely many components. Then

Iso(M, g) is a Lie group. If M is compact then so is Iso(M, g).

The space Diff(M) is an infinite-dimensional (Fréchet) manifold (cf.

the bonus section to Lecture 13). Theorem 46.9 tells us that Iso(M, g)

is a finite-dimensional subgroup.

Theorem 46.9 is too hard for us. However we can at least prove

something in this direction:
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Proposition 46.10. Let ϕ be an isometry of a connected Riemannian

manifold (M, g). Suppose there exists a point p ∈ M such that ϕ(p) =

p and Dϕ(p) = IdTpM . Then ϕ(q) = q for all q ∈M .

We will prove Proposition 46.10 next lecture.

As already remarked, any isometric map between Riemannian man-

ifolds is necessarily an immersion. In fact, there is a partial converse

to this, as we now explain.

Suppose (N, g) is a Riemannian manifold and ϕ : M → N is a

smooth map. Consider the pullback tensor ϕ∗g ∈ T0,2(M). In general

this will not define a metric on M – it will always be symmetric, but it

need not be positive definite (for example, if ϕ is constant it is identi-

cally zero). If however ϕ is an immersion then ϕ∗g is positive definite,

and hence a Riemannian metric on M . This proves the following use-

ful statement.

Lemma 46.11. Let (N, g) be a Riemannian manifold and suppose

ϕ : M → N is an immersion. Then ϕ∗g is a Riemannian metric on M ,

and ϕ : (M,ϕ∗g) → (N, g) is an isometric map. Moreover ϕ∗g is the

unique Riemannian metric on M with this property.

Definition 46.12. Let (N, g) be a Riemannian manifold. An embed-

ded submanifold M of N is said to be a Riemannian submanifold

if M is endowed with the pullback Riemannian metric ι∗g (where

ι : M ↪→ N denotes the inclusion).

Examples 46.13.

The standard Riemannian metric gEuc on Rm is given by

〈Ju(v),Ju(w)〉Euc := 〈v, w〉Euc , u, v, w ∈ Rm,

where 〈·, ·〉Euc on the right-hand side denotes the Euclidean dot prod-

uct.

Let ι : Sm → Rm+1 denote the inclusion, and let ground := ι∗gEuc.

Then ground is a Riemannian metric on Sm which we call the round This is because the sphere looks

“round” in this metric. The precise
meaning of this will become clear in

Lecture ??.

metric. This is the unique metric on Sm that makes Sm into a Rie-

mannian submanifold of Rm+1. Our favourite connection on Sm (in-

troduced originally in Problem L.3) is in fact the Levi-Civita connec-

tion by Problem P.4.

If ϕ : M → N is an immersion then necessarily dimM ≤ dimN . If

dimM = dimN then there are essentially two cases of interest:

(i) If ϕ is an injective immersion and dimM = dimN then it follows Compare this to Problem C.3, which

gives another (entirely unrelated)
condition for an injective immersion
to automatically be an embedding.

from Proposition 6.3 and the Inverse Function Theorem 5.10 that ϕ

is automatically an embedding onto its image. Such a map is often

called an open embedding, since ϕ(M) is then open in N .

(ii) The other main case of interest is when ϕ is a smooth covering

map. This means that ϕ is surjective and moreover every point Caution: Not all surjective submer-

sions between manifolds of the same
dimension are covering maps.

q ∈ N has a neighbourhood Uq such that ϕ maps each component

of ϕ−1(Uq) diffeomorphically onto Uq.
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Covering maps are important in Algebraic Topology. We will not

really have any cause to use them, other than to note they provide us

with further examples of isometric maps.

Definition 46.14. A Riemannian covering ϕ : (M, g) → (N,h) is

an isometric map between Riemannian manifolds which is in addition

a smooth covering map. Note this necessarily implies dimM = dimN .

Recall a covering map f : X → Y between topological spaces is Don’t worry if you are unfamiliar with
covering space theory – we will not

actually use any of this, it is just for

interest.

normal if f∗(π1(X,x)) is a normal subgroup of π1(Y, f(x)). In par-

ticular, a universal cover is always normal. It is a standard result in

covering space theory that a covering is normal if and only if the deck

transformation group acts transitively on the fibres. If ϕ : M → N is a

smooth normal covering map then ϕ is necessarily a submersion, and

the deck transformations are diffeomorphisms of M . The proof of the

next result is deferred to Problem Sheet P.

Proposition 46.15. Let ϕ : M → N be a smooth normal covering

map and let m be a Riemannian metric on M which is invariant under

all deck transformations. Then there is a unique Riemannian metric

on N such that ϕ is a Riemannian covering.

Here are some (non)-examples.

Examples 46.16.

(i) We can think of the torus Tm as the quotient Rm
/
Zm, and in fact

this is the universal cover. By Proposition 46.15 there is a unique

Riemannian metric on Tm such that the quotient map Rm → Tm

is a Riemannian covering, where Rm is equipped with its standard As with the earlier “round” metric on

Sm, the precise justification for the
name “flat” will come in Lecture ??.

Euclidean metric gEuc. We call this metric the flat metric on the

torus and write it as gflat.

(ii) Take m = 2. Then one can embed T 2 into R3 – think of a hollow

doughnut. If ι : T 2 → R3 denotes the inclusion then ι∗gEuc is

another Riemannian metric on T 2. As we will see next lecture,

gflat is not the same Riemannian metric as ι∗gEuc. In fact, it is not

possible to embed (T 2, gflat) into (R3, gEuc).

(iii) The projection map Sm → RPm is a smooth normal covering.

Thus there is a unique Riemannian metric m on RPm such that

(Sm, ground)→ (RPm,m) is a Riemannian covering.

Remark 46.17. Immersions are dual to submersions, and thus it

won’t surprise you to learn that there is a dual notion of a Rie-

mannian submersion which allows for the case dimM ≥ dimN .

We won’t have cause to study these in general (and they are a little

messier to define), although see Problem P.8 for an important special

case.
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Bonus Material for Lecture 46

We conclude this lecture by briefly discussing Riemannian holonomy

groups.

Definition 46.18. Let (M, g) be a connected Riemannian manifold.

We define the holonomy group of g, written as Hol(g), to be the

holonomy group Hol∇, where ∇ is the Levi-Civita connection of g. As

in Corollary 32.16, we think of Hol(g) as a subgroup of GL(m), which

is defined only up to conjugation. Similarly we define the restricted

holonomy group of g, written Hol0(g).

It follows from Problem N.4 that Hol(g) is actually a subgroup of

O(m) (and thus Hol0(g) is a subgroup of SO(m)). On Problem Sheet

P you will extend this to the following statement:

Proposition 46.19. Let M be a connected manifold and suppose ∇ is

a torsion-free connection on M . Then ∇ is the Levi-Civita connection

of a Riemannian metric g on M if and only if Hol∇ is conjugate in

GL(m) to a subgroup of O(m).

The following statement is much more difficult, and its proof goes

beyond the scope of this course. It uses the Lie-theoretic fact that

every connected Lie subgroup of SO(m) that acts irreducibly on Rm is

in fact closed in SO(m).

Theorem 46.20. Let (M, g) be a connected Riemannian manifold.

Then Hol0(g) is a closed connected subgroup of SO(m).

Theorem 46.20, together with Theorem 45.16 (and lots and lots and

lots of work) gives the following amazing result.

Theorem 46.21 (The Berger Classification Theorem). Let M be

a simply connected manifold and suppose g is an irreducible non-

symmetric Riemannian metric on M . Then exactly one of the follow- As with Theorem 45.16, we won’t

define precisely what this means, as

doing so would take us too far afield.
ing options holds for the holonomy group Hol(g):

(i) Hol(g) = SO(m).

(ii) m = 2k for k ≥ 2 and Hol(g) = U(k) ⊂ SO(2k).

(iii) m = 2k for k ≥ 2 and Hol(g) = SU(k) ⊂ SO(2k).

(iv) m = 4k for k ≥ 2 and Hol(g) = Spc(k) ⊂ SO(4k). Spc(k) is the compact symplectic
group Sp(2k;C) ∩ U(2k). One can

think of Spc(k) as the quaternionic
unitary group.

(v) m = 4k for k ≥ 2 and Hol(g) = Sp(2k) · Spc(1) ⊂ SO(4k).

(vi) m = 7 and Hol(g) = G2 ⊂ SO(7). See here for the definition of G2.

(vii) m = 8 and Hol(g) = Spin(7) ⊂ SO(8). The group Spin(m) is the double
cover of SO(m) (recall π1(SO(m)) =

Z2). For m ≥ 3 the group Spin(m) is

simply connected, and thus is also the
universal cover of SO(m).

Moreover all of these groups can occur as the holonomy group of an

irreducible non-symmetric Riemannian metric.

As the name suggests, the fact that these are the only options is

due to Berger in 1955. The proof that all of these groups really do

occur took thirty more years to complete, and is the work of various

mathematicians. This culminated in the work of Joyce, who in 1996

constructed compact Riemannian manifolds with holonomy the two

so-called exceptional holonomy groups G2 and Spin(7).

https://en.wikipedia.org/wiki/G2_(mathematics)


Will J. Merry

LECTURE 47

Symmetries of the Curvature Tensor

We begin this lecture by investigating what an isometric map does to

the Levi-Civita connection. We then study the various symmetries the

curvature tensor of a Levi-Civita connection enjoys.

Definition 47.1. Let (N,h) be a Riemannian manifold and suppose

ϕ : M → N is an immersion. Let (·)> : Tϕ(p)N → Dϕ(p)(TpM) denote

orthogonal projection with respect to the inner product hϕ(p) onto the

subspace Dϕ(p)(TpM) of Tϕ(p)N .

For ξ ∈ Tϕ(p)N we write ξ⊥ := ξ − ξ>, so that

ξ = ξ> + ξ⊥.

We call ξ> the tangential component of ξ and ξ⊥ the orthogonal

component. Note if dimM = dimN then ξ> = ξ and ξ⊥ = 0 for

all ξ, since projecting onto a subspace of full dimension doesn’t do

anything.

We can also think of (·)> as an operator

(·)> : Γϕ(TN)→ Γϕ(TN), W>(p) = (W (p))>. (47.1)

The metric h on N also defines for us a musical isomorphism between cf. Problem N.5.

vector fields along ϕ and one-forms along ϕ:

W ∈ Γϕ(TN) 7→W [ ∈ Γϕ(T ∗N), W [
p(ξ) := 〈W (p), ξ〉 . (47.2)

Now suppose M also carries a Riemannian metric g and ϕ is iso-

metric. In this case we can combine the musical isomorphism (47.2)

with a musical isomorphism on M to obtain another description of the

operator (·)>.

Lemma 47.2. Let ϕ : (M, g) → (N,h) be an isometric map between

Riemannian manifolds. The composition

Γϕ(TN)
[h−→ Γϕ(T ∗N)

ϕ∗−−→ Ω1(M)
]g−→ X(M)

Dϕ−−→ Γϕ(TN)

coincides with the operator (·)> from (47.1).

The proof of Lemma 47.2 is on Problem Sheet P.

Proposition 47.3. Let ϕ : (M, g) → (N,h) be an isometric map

between Riemannian manifolds. Let ∇g denote the Levi-Civita con-

nection of (M, g), and let ∇h denote the Levi-Civita connection of

(N,h). Then:

(i) Write ∇h,ϕ for the covariant derivative operator along ϕ induced by

the Levi-Civita connection ∇h on N . Then for all X,Y ∈ X(M) one

has (
∇h,ϕX

(
Dϕ(Y )

))>
= Dϕ

(
∇gXY

)
Last modified: July 17, 2021.
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(ii) If in addition dimM = dimN then the same thing holds without

the “>”:

∇h,ϕX
(
Dϕ(Y )

)
= Dϕ

(
∇gXY

)
.

Proof. Since ϕ is isometric, it follows from (46.2) and Proposition 46.6

that for X,Y, Z ∈ X(M) that〈
∇h,ϕX (Dϕ(Y )), Dϕ(Z)

〉
= 〈∇gXY,Z〉 .

Moreover as ϕ is isometric we have

〈∇gXY,Z〉 =
〈
Dϕ
(
∇gXY

)
, Dϕ(Z)

〉
,

which implies that (
∇h,ϕX

(
Dϕ(Y )

))>
= Dϕ

(
∇gXY

)
(both sides are elements of Γϕ(TN)). This proves (i). The second

statement is immediate consequence.

Proposition 47.3 can also be reformulated in terms of the connec-

tion maps.

Proposition 47.4. Let ϕ : (M, g) → (N,h) be an isometric map be-

tween Riemannian manifolds. Let Kg : TTM → TM and Kh : TTN →
TN denote the connection maps associated to the Levi-Civita connec-

tions on (M, g) and (N,h) respectively. Then:

(i) If ζ ∈ T(p,ξ)TM then

Dϕ(p)Kg(ζ) =
(
Kh

(
D(Dϕ)(p, ξ)ζ

))>
,

where D(Dϕ)(p, ξ) denotes the differential of the map Dϕ : TM →
TN at (p, ξ) ∈ TM .

(ii) If in addition dimM = dimN then the same thing holds without

the “>”:

Dϕ(p)Kg(ζ) = Kh

(
D(Dϕ)(p, ξ)ζ

)
.

Thus when dimM = dimN the following commutes:

TTM TTN

TM TN

D(Dϕ)

Kg Kh

Dϕ

The proof of Proposition 47.4 is immediate from Proposition 47.3

and the definition (31.8) of the covariant derivative operators.

Corollary 47.5. Let ϕ : (M, g) → (N,h) be an isometric map

between Riemannian manifolds of the same dimension. Let ∇g denote

the Levi-Civita connection of (M, g), and let ∇h denote the Levi-

Civita connection of (N,h). Let Rg and Rh denote their curvature

tensors. Then for all p ∈M and all ξ, ζ, η ∈ TpM , one has

Dϕ(p)
(
Rg(ξ, ζ)(η)

)
= Rh

(
Dϕ(p)ξ,Dϕ(p)ζ

)(
Dϕ(p)η

)
.
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Proof. This follows from part (ii) of Proposition 47.4 together with

Proposition 35.9.

Definition 47.6. Let (M, g) be a Riemannian manifold. The expo-

nential map of g is by definition the exponential map of the geodesic

spray of the Levi-Civita connection of g.

The next result shows isometric maps between Riemannian mani-

folds of the same dimension behave similarly to Lie group homomor-

phisms for the exponential map of a Riemannian metric (compare this

with Proposition 12.5).

Proposition 47.7. Let ϕ : (M, g) → (N,h) be an isometric map

between Riemannian manifolds of the same dimension. Let ∇g denote

the Levi-Civita connection of (M, g), and let ∇h denote the Levi-

Civita connection of (N,h). Let expg and exph denote the associated

exponential maps. Then

exph ◦Dϕ = ϕ ◦ expg

Proof. It follows from part (ii) of Proposition 47.3 that if ρ is a par-

allel vector field along a curve γ in M then Dϕ(ρ) is a parallel vector

field along ϕ ◦ γ in N . Taking ρ = γ̇ shows that ϕ maps geodesics in

M to geodesics in N . The claim now follows from the uniqueness part

of Proposition 43.5.

The next corollary shows how restrictive the condition of being an

isometric map is when the manifolds have the same dimension.

Corollary 47.8. Let ϕ,ψ : (M, g) → (N,h) be two isometric maps

between Riemannian manifolds of the same dimension. Assume M is

connected and that there exists o ∈ M such that ϕ(p) = ψ(p) and

Dϕ(p) = Dψ(p). Then ϕ = ψ.

Proof. Let

A := {q ∈M | ϕ(q) = ψ(q) and Dϕ(q) = Dψ(q)} .

Then A is non-empty as p ∈ A. Moreover A is closed as manifolds are

Hausdorff and Dϕ and Dψ are continuous (actually, smooth). If q ∈ A
then by part (ii) of Theorem 44.3 there exists a neighbourhood Vq of

0q ∈ TqM such that expgq maps Vq diffeomorphically onto its image. If

ξ ∈ Vq then by Proposition 47.7 we have

ϕ(expgq(ξ)) = exphϕ(q)(Dϕ(q)ξ)

= exphψ(q)(Dψ(q)ξ)

= ψ(expgq(ξ)),

and hence on Vq one has (as smooth maps)

ϕ ◦ expgq = ψ ◦ expgq ,

which in particular implies that expgq(Vq) ⊂ A. Since expgq(Vq) is open

and q was arbitrary, it follows that A is also open, and hence A = M

as M is connected.



4

Proposition 46.10 from the previous lecture is special case M = N

and ψ = id.

We conclude this lecture by showing how a Riemannian metric

allows us to view the curvature as a tensor of type (0, 4) instead of

type (1, 3), and studying the various symmetries this tensor possesses.

Definition 47.9. Let (M, g = 〈·, ·〉) denote a Riemannian manifold,

and suppose ∇ is a connection on M (not necessarily torsion-free or

metric with respect to g). Then R∇ ∈ T1,3(M). We use g to define a This is another incarnation of the

musical isomorphism – in general the

metric defines musical isomorphisms
Th,k → Th±1,k∓1.

new tensor R∇g ∈T0,4(M) by

R∇g (X,Y, Z,W ) :=
〈
R∇(X,Y )(Z),W

〉
, ∀X,Y, Z,W ∈ X(M).

Suppose (U, x) is a chart on M . Then we can write

R∇ = Rlijk ∂l ⊗ dxi ⊗ dxj ⊗ dxk

and

R∇g = Rijkl dx
i ⊗ dxj ⊗ dxk ⊗ dxl

where Rlijk and Rijkl are smooth functions on U given by

Rlijk = dxl
(
R∇(∂i, ∂j)(∂k)

)
and

Rijkl := R∇g (∂i, ∂j , ∂k, ∂l).

If we write g = gij dx
i ⊗ dxj then

Rijkl =
〈
R∇(∂i, ∂j)(∂k), ∂l

〉
=
〈
Rhijk∂h, ∂l

〉
= ghlR

h
ijk

The next result clarifies the symmetries of R∇g .

Proposition 47.10 (Symmetries of R∇g ). Let (M, g) be a Riemannian

manifold and let ∇ be a connection on M . Then for any X,Y, Z,W ∈
X(M):

(i) R∇g (X,Y, Z,W ) = −R∇g (Y,X,Z,W ). i.e. flipping the first two variables

(ii) If ∇ is metric with respect to g then i.e. flipping the last two variables

R∇g (X,Y, Z,W ) = −R∇g (X,Y,W,Z).

(iii) If ∇ is torsion-free then i.e. fixing the last variable and cycli-
cally permuting the other three

R∇g (X,Y, Z,W ) + R∇g (Y,Z,X,W ) + R∇g (Z,X, Y,W ) = 0.

(iv) If ∇ is the Levi-Civita connection of g then i.e. reversing all the variables

R∇g (X,Y, Z,W ) = R∇g (W,Z, Y,X)

Proof. Property (i) is clear as R∇ is alternating. Property (ii) is a

restatement of Proposition 37.15. Property (iii) is a restatement of

part (i) of Proposition 45.12.
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Finally, property (iv) is an algebraic consequence of the other prop-

erties. Indeed,

R∇g (X,Y, Z,W ) = −R∇g (Y,X,Z,W )

= R∇g (X,Z, Y,W ) + R∇g (Z, Y,X,W )

and also

R∇g (X,Y, Z,W ) = −R∇g (X,Y,W,Z)

= R∇g (Y,W,X,Z) + R∇g (W,X, Y, Z)

and so

2R∇g (X,Y, Z,W ) = R∇g (X,Z, Y,W )︸ ︷︷ ︸
=(a)

+ R∇g (Z, Y,X,W )︸ ︷︷ ︸
=(b)

+ R∇g (Y,W,X,Z)︸ ︷︷ ︸
=(c)

+ R∇g (W,X, Y, Z)︸ ︷︷ ︸
=(d)

.

Similarly

2R∇g (W,Z, Y,X) =R∇g (W,Y,Z,X)︸ ︷︷ ︸
=(e)

+ R∇g (Y,Z,W,X)︸ ︷︷ ︸
=(f)

+ R∇g (Z,X,W, Y )︸ ︷︷ ︸
=(g)

+ R∇g (X,W,Z, Y )︸ ︷︷ ︸
=(h)

.

Then using

(a) = R∇g (X,Z, Y,W ) = (−1)2R∇g (Z,X,W, Y ) = (g),

(b) = R∇g (Z, Y,X,W ) = (−1)2R∇g (Y,Z,W,X) = (f),

(c) = R∇g (Y,W,X,Z) = (−1)2R∇g (W,Y,Z,X) = (e),

(d) = R∇g (W,X, Y, Z) = (−1)2R∇g (X,W,Z, Y ) = (h),

we see that

2R∇g (X,Y, Z,W ) = 2R∇g (W,Z, Y,X),

and this completes the proof.

Bonus Material for Lecture 47

In this bonus section we state a theorem of Epstein, which, roughly

speaking, can be thought of as a converse to Proposition 47.3.

Definition 47.11. A natural Riemannian connection is an as-

signment of a connection ∇M,g to every Riemannian manifold (M,m)

which is natural in the following sense: If ϕ : (M, g) → (N,h) is an

injective isometric map between Riemannian manifolds of the same

dimension (i.e. an isometric open embedding) then

ϕ∗∇N,h = ∇M,g.
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We denote such a natural connection by ∇. A natural Riemannian

connection is said to be homogeneous if it is invariant under scaling:

∇M,g = ∇M,cg

for any c > 0.

This is easiest to explain with an example.

Example 47.12. The assignment ∇LC that assigns to each Rieman-

nian manifold (M, g) its Levi-Civita connection is a natural Rieman-

nian connection by Proposition 47.3. It is clear from (46.2) that the

Levi-Civita connection is homogeneous.

The definition of a natural Riemannian connection can be phrased

more concisely using categorical language. Here are the details. Con-

sider the category OpenEmb whose objects are smooth manifolds and

whose morphisms are open embeddings, i.e. embeddings that are dif-

feomorphisms onto their images (this is a subcategory of the category

Man – note there are no morphisms from M to N in this category if

dimM 6= dimN). Consider the contravariant functor R on OpenEmb

that assigns to a manifold M the space R(M) of all Riemannian met- The space R(M) is actually an

infinite-dimensional (locally) Fréchet
manifold, but we won’t need or use

this fact.

rics on M , and assigns to an open embedding ϕ : M → N the induced

map

ϕ∗ : R(N)→ R(M), g 7→ ϕ∗g.

In a similar vein there is a contravariant functor C on OpenEmb that

assigns to M the space C(M) of all connections on M , and on mor-

phisms operates by pullback. Then a natural Riemannian connection

∇ is exactly a natural transformation from R to C.

Definition 47.13. Suppose ∇ is a natural Riemannian connection.

We say that ∇ is of polynomial type if for each m ≥ 0 there exist

polynomials P kij for 1 ≤ i, j, k ≤ m such that: For any m-dimensional

Riemannian manifold (M, g), and for any chart (U, x) the Christoffel

symbols Γkij are given as polynomials in the components gij of g rela-

tive to x, together with their inverse gij , and all derivatives of gij up

to some finite order d, i.e.

Γkij = P kij

(
gpq; g

rs;
∂|α|

∂xα
ghl

)
,

where α is any multi-index of degree at most d.

Again, this is easiest to explain with an example.

Example 47.14. The natural Riemannian connection ∇LC is a poly-

nomial connection by Lemma 46.2 (with d = 1).

Here now is our promised theorem. One should think of it as a

far-reaching complement of Theorem 46.1 (which in fact deserves the

name “The Fundamental Theorem of Riemannian Geometry much

better!)

Theorem 47.15 (Epstein, 1978). Let ∇ be a homogeneous natural

Riemannian connection. Assume ∇ is of polynomial type. Then ∇ =

∇LC is the Levi-Civita connection.



Will J. Merry

LECTURE 48

Sectional, Ricci, and Scalar Curvature

In this lecture we investigate various other curvatures that can be as-

sociated to a Riemannian manifold. In doing so we will finally make

contact with the geometric intuition of the word “curvature”: as we

will see, the sphere Sm thought of as a Riemannian submanifold of

Rm+1 is positively curved, whereas the hyperbolic plane with its natu-

ral metric (see Definition 48.18) is negatively curved.

Definition 48.1. Let (M, g) be a Riemannian manifold. Let ∇ denote

the Levi-Civita connection of g, and fix p ∈ M . Given two linearly

independent tangent vectors ξ1, ξ2 ∈ TpM we define the sectional

curvature of the 2-plane Π = span{ξ1, ξ2} ⊆ TpM to be

sectg(p; Π) :=
R∇g (ξ1, ξ2, ξ2, ξ1)

〈ξ1, ξ1〉〈ξ2, ξ2〉 − 〈ξ1, ξ2〉2
. (48.1)

Note that this depends only on the 2-plane Π and not the choice

of basis {ξ1, ξ2}, since both R∇g and g are linear and thus both the

numerator and denominator of (48.1) are homogeneous of degree

two. In particular, if e1, e2 are orthonormal vectors such that Π :=

span{e1, e2} then then

sectg(p; Π) = R∇g (e1, e2, e2, e1).

Remark 48.2. If dimM = 2 then there is only one two-plane in

each tangent space (namely, the entire tangent space), and thus in this

case the sectional curvature is simply a function sectg : M → R. For

historical reasons in this case the sectional curvature is often called the

Gaussian curvature.

Definition 48.3. Let (M, g) be a Riemannian manifold and let κ ∈ R.

We say that (M, g) has constant curvature κ if

sectg(p; Π) = κ, ∀ p ∈M, ∀ 2-planes Π ⊂ TpM.

Example 48.4. If we consider Rm with its standard Euclidean metric

(part 46.13 of Examples 46.13) then Rm has constant curvature with

κ = 0.

Example 48.5. If we consider the sphere Sm as a Riemannian sub-

manifold of Rm+1 part 46.13 of Examples 46.13 then it follows from

Problem M.5 that Sm has constant curvature with κ = 1. More gen-

erally, if Sm(r) denotes the sphere of radius r > 0 then the same

argument shows that Sm(r) (as a Riemannian submanifold of Rm+1)

has constant curvature with κ = 1
r2 .

We will discuss the case of κ < 0 in Definition 48.18 below.

Remark 48.6. The argument from Problem N.9 easily adapts to show

that if M is any manifold that admits a metric of constant curvature

then pr(TM) = 0 for all r > 0.

Last modified: July 17, 2021.
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In fact, the sectional curvature determines the full Riemannian cur-

vature tensor. In order to prove this, we need the following algebraic

lemma.

Lemma 48.7. Let V be a vector space and R1, R2 : V ×V ×V ×V → R
two quadrilinear maps such that for all x, y, z, w ∈ V and i = 1, 2: These are the four symmetries from

Proposition 47.10.

(i) Ri(x, y, z, w) = −Ri(y, x, z, w),

(ii) Ri(x, y, z, w) = −Ri(x, y, w, z),

(iii) Ri(x, y, z, w) +Ri(y, z, x, w) +Ri(z, x, y, w) = 0.

(iv) Ri(x, y, z, w) = Ri(w, z, y, x).

Then if for all x, y ∈ V we also have R1(x, y, y, x) = R2(x, y, y, x), then

in fact R1 ≡ R2.

Proof. It suffices to show that if a quadrilinear map R satisfies the

four conditions of the lemma and in addition satisfies R(x, y, y, x) = 0

for all x, y ∈ V then R ≡ 0. So suppose this is the case. Then

0 = R(x+ z, y, y, x+ z)

= R(x, y, y, x) +R(z, y, y, x) +R(x, y, y, z) +R(z, y, y, z)

= R(x, y, y, z) +R(z, y, y, x) + 0

= 2R(x, y, y, z),

and hence R is also alternating with respect to the second and third

variables:

R(x, y, z, w) = −R(x, z, y, w)

Then

0 = R(x, y, z, w) +R(y, z, x, w) +R(z, x, y, w)

= R(x, y, z, w)−R(y, x, z, w)−R(x, z, y, w)

= 3R(x, y, z, w).

This completes the proof.

Corollary 48.8. The sectional curvatures determine the full curva-

ture tensor.

The next corollary tells us that if the sectional curvatures at a

given point are independent of the choice of two-plane then the full

curvature tensor takes a particularly nice form. First, a definition:

Definition 48.9. Let (M, g) denote a Riemannian manifold. Define a

tensor Sg ∈T0,4(M) by

Sg(X,Y, Z,W ) := 〈X,W 〉〈Y, Z〉 − 〈X,Z〉〈Y,W 〉.

Corollary 48.10. Suppose that (M, g) is a Riemannian manifold and

∇ is the Levi-Civita connection on M . Suppose there exists a function

f ∈ C∞(M) such that

sectg(p; Π) = f(p), ∀ 2-planes Π ⊂ TpM.

Then R∇g = fSg.
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Proof. Apply Lemma 48.7 to R∇g and fSg.

If M is 2-dimensional then the hypotheses of Corollary 48.10 are

automatically satisfied (cf. Remark 48.2), and hence we obtain:

Corollary 48.11. Let (M, g) be a two-dimensional Riemannian

manifold, and let ∇ denote the Levi-Civita connection of g. Then

R∇g = sectg Sg,

where sectg ∈ C∞(M) denotes the sectional (or Gaussian) curvature.

In higher dimensions the situation dramatically changes: if M is

connected then the hypotheses of Corollary 48.10 force g to have to

constant curvature.

Theorem 48.12 (Schur’s Theorem, Version I). Let (M, g) be a con-

nected Riemannian manifold of dimension n ≥ 3. Suppose there exists

a function f ∈ C∞(M) such that sectg(p; Π) = f(p) for all 2-planes

Π ⊂ TpM . Then f is a constant function, and hence (M, g) is a space

of constant curvature.

The proof of Theorem 48.12 requires the following preliminary

technical lemma.

Lemma 48.13. Let (M, g) be a Riemannian manifold, and let ∇ de-

note the Levi-Civita connection of g. Fix p ∈ M and let (U, x) be

normal coordinates at p. Then for all 1 ≤ h, i, j, k, l ≤ m one has

∂iRjklh(p) + ∂jRkilh(p) + ∂kRijlh(p) = 0. (48.2)

Lemma 48.13 is essentially just a restatement of part (ii) of Propo-

sition 45.12.

Proof. The following computation is only valid at the point p, but to

keep the notation simple in the following computation we omit the p

from both sides:(
∇∂iR∇

)
(∂j , ∂k)(∂l) = ∇∂i

(
R∇(∂j , ∂k)

)
(∂l)−R∇

(
∇∂i∂j , ∂k

)
(∂l)

−R∇
(
∂j ,∇∂i∂k

)
∂l

= ∇∂i
(
R∇(∂j , ∂k)

)
(∂l) + 0

= ∇∂i
(
R∇(∂j , ∂k)∂l

)
−R∇(∂j , ∂k)

(
∇∂i∂l

)
= ∇∂i

(
Rhjkl∂h

)
+ 0

= ∂i
(
Rhjkl

)
∂h +Rhjkl∇∂i∂h

= ∂i
(
Rhjkl

)
∂h + 0,

where the first equality used the definition of the induced connection

on the tensor bundle T 1,3(TM) → M and the third equality used the

definition of the induced connection on T 1,1(TM). Thus part (ii) of

Proposition 45.12 tells us that in these coordinates we have

∂i
(
Rhjkl

)
(p) + ∂j

(
Rhkil

)
(p) + ∂k

(
Rhijl

)
(p) = 0. (48.3)
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We now translate this into a statement about Rijkl. Firstly, by defini-

tion:

Rijkl = 〈R∇(∂i, ∂j)(∂k), ∂l〉 = 〈Rhijk∂h, ∂l〉 = ghlR
h
ijk.

By (46.5) the first derivatives of the ghl vanish at p, and hence for any

1 ≤ ν ≤ m we have

∂νRijkl(p) = ∂ν
(
ghlR

h
ijk

)
(p)

= ∂νghl(p)R
h
ijk(p) + ghl(p)∂ν

(
Rhijk

)
(p)

= ∂ν
(
Rlijk

)
(p).

Inserting this into (48.3) gives the desired equation.

We can now prove Schur’s Theorem 48.12.

Proof of Theorem 48.12. Fix p ∈ M , and let (U, x) be normal coordi-

nates about p. Applying Corollary 48.10 to the coordinate vector fields

∂i we see that on U we have

Rjklh = f
(
gjhgkl − gjlgkh

)
.

Differentiating both sides of this equation and evaluating at p gives

∂iRjklh(p) = ∂if(p)
(
δjhδkl − δjlδkh

)
,

where we again used the fact that the first derivatives of the gjk van-

ish at p. Inserting this equation into (48.2) (together with the analo-

gous statements for ∂j and ∂k) gives us

0 = ∂iRjklh(p) + ∂jRkilh(p) + ∂kRijlh(p)

= ∂hf(p)
(
δjhδkl − δjlδkh

)
+ ∂jf(p)

(
δkhδil − δklδih

)
+ ∂kf(p)

(
δihδjl − δilδjh

)
.

Now fix an arbitrary 1 ≤ i ≤ m. Since m ≥ 3, we can choose j, k such

that i, j, k are all distinct. Then setting h = k, l = j in the previous

equation gives

0 = −∂if(p).

Since i was arbitrary, it follows that dfp = 0. Since p was arbitrary,

f must be locally constant. Since M is connected, f is constant. This

completes the proof.

We next investigate how the sectional curvatures change when one

changes the metric. This will lead us to the hyperbolic plane.

Definition 48.14. Let M be a smooth manifold. Two Riemannian

metrics g1 and g2 on M are conformally equivalent if there exists a

smooth positive function φ : M → (0,∞) such that g2 = φg1.

Let us compute (or more accurately, state) how the Levi-Civita con-

nection and its curvature tensor change under conformal equivalence.

In the following we let g1 = 〈·, ·〉 denote a Riemannian metric on M

and we let g2 = φg1 denote a conformally equivalent metric. Set

ψ := log
√
φ so that g2 = e2ψg1
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Lemma 48.15. Let ∇i be the Levi-Civita connection of gi. Then for

X,Y ∈ X(M) one has Here ] denotes the musical isomor-

phism with respect to g1 = 〈·, ·〉.
∇2
XY −∇1

XY = X(ψ)Y + Y (ψ)X − 〈X,Y 〉dψ].

Note that if φ is a constant function then ∇2 = ∇1 – this once

again shows that the Levi-Civita connection is homogeneous in the

sense of Definition 47.11. Next, we have:

Lemma 48.16. Let Ri be curvature tensor of the Levi-Civita connec-

tion ∇i of gi. Then for X,Y, Z ∈ X(M) one has

R2(X,Y )(Z)−R1(X,Y )(Z) = 〈∇1
X(dψ]), Z〉Y − 〈∇1

Y (dψ]), Z〉X
− 〈X,Z〉∇1

Y (dψ])− 〈Y,Z〉∇1
X(dψ])

+ Y (ψ)Z(ψ)X − 〈Y, Z〉‖dψ]‖2X
−X(ψ)Z(ψ)Y + 〈X,Z〉‖dψ]‖2Y
+X(ψ)〈Y,Z〉dψ] − Y (ψ)〈X,Z〉dψ].

The proof of Lemma 48.16 is an easy, albeit lengthy computation,

which we leave to the conscientious reader as a wholesome exercise.

Corollary 48.17. Let p ∈M and let Π = span{e1, e2} ⊂ TpM , where

the ei are orthonormal with respect to g1. Then

φ(p) sectg2
(p; Π)− sectg1

(p; Π) =− 〈∇1
e1(dψ]), e1〉 − 〈∇1

e2(dψ]), e2〉
− ‖dψ](p)‖2 + e1(ψ)2 + e2(ψ)2.

Recall our notation for a half-space from Definition 24.18.

Definition 48.18. Let Hm := Rmum>0. We equip Hm with the metric

ghyp := φgEuc where φ is the smooth positive function φ(u1, . . . , um) =
1

(um)2 . Thus ψ = − log um and Corollary 48.17 becomes

φ sectghyp
(p; Π)− 0 = −φ.

Thus (Hm, ghyp) is a space with constant curvature κ = −1. We call

(Hm, ghyp) the m-dimensional hyperbolic plane. More generally

if we take φ = r2

(um)2 then we get a space with constant curvature

κ = − 1
r2 . We denote this metric by ghyp;r.

We conclude the our discussion on sectional curvature with the

following theorem. In the following we say a Riemannian manifold

(M, g) is complete if the Levi-Civita connection ∇ of g is complete in In Lecture ?? we will see that this
is equivalent to asking that M is

complete as a metric space.
the sense of Definition 43.7.

Theorem 48.19 (Killing-Hopf). Let (M, g) be a connected, simply

connected and complete Riemannian manifold with constant curva-

ture κ. Then (M, g) is isometric to exactly one of the following three

manifolds:

(i) (Rm, gEuc) if κ = 0,

(ii) (Sm(r), ground) if κ > 0, where r := 1√
κ

.

(iii) (Hm, ghyp;r) if κ < 0, where r := 1√
−κ .
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Sadly we won’t have enough time to prove Theorem 48.19. We will

however prove several related results in Lecture ??, starting with the

famous Cartan-Hadamard Theorem (Theorem ??).

Instead for now we move onto our next variant of the curvature

tensor.

Definition 48.20. Let (M, g) be a Riemannian manifold with Levi-

Civita connection ∇. The Ricci tensor of g is the (0, 2)-tensor defined In more formal language, the Ricci

tensor is the trace of the full curva-

ture tensor. See Definition ??.
as followed: for p ∈M and ξ, ζ ∈ TpM ,

Ricg(ξ, ζ) :=

m∑
i=1

R∇g (ei, ξ, ζ, ei), (48.4)

where (ei) is an orthornomal basis of TpM .

Note that Ricg is symmetric by part (iv) of Proposition 47.10. In a

chart (U, x) if we write

Ricg = rij dx
i ⊗ dxj ,

where rij = Ricg(∂i, ∂j), then When performing computations with

the Ricci tensor we typically need
to include the summation signs (i.e.

the Einstein Summation Convention

“doesn’t work”). This is because the
definition (48.4) has a sum over the

index i, which appears twice as a

lower index.

rij(p) =

m∑
h=1

Rhijh(p) (48.5)

Remark 48.21. Unlike the sectional curvatures, if dimM ≥ 4, the full

curvature tensor R∇g is in general not completely determined by the

Ricci tensors. This should not surprise you, as one typically cannot re-

cover a matrix from its trace. When dimM = 2 or dimM = 3 however

it is possible to recover R∇g from Ricg, as you show on Problem Sheet

P.

The Ricci tensor is a symmetric tensor of type (0, 2). The metric is

another symmetric tensor of type (0, 2), and it therefore makes sense

to ask whether the two are related. In general the answer is “no”: for

instance, there is no reason why Ricg should be positive definite.

Definition 48.22. We say that a metric g is an Einstein metric on

M if there exists a constant λ ∈ R such that

Ricg = λg.

We will discuss the motivation for this condition (together with

an explanation of the name) in the bonus section of this lecture. For

now let us note that this notion is only interesting when dimM ≥ 4.

Indeed, on Problem Sheet P you will prove that if dimM = 2 or

dimM = 3 then a metric g is Einstein if and only if g has constant

curvature.

Here is the Ricci Curvature version of Schur’s Theorem 48.12.

Theorem 48.23 (Schur’s Theorem, Version II). Let (M, g) be a con-

nected Riemannian manifold of dimension m ≥ 3. Assume there exists

a smooth function f on M such that Ricg = fg. Then f is a constant

function, and hence g is an Einstein metric.
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The proof of Theorem 48.23 again uses Lemma 48.13, and is similar

to that of Theorem 48.12.

Proof. Fix p ∈ M and let (U, x) be normal coordinates about p. By

assumption, we have

rij(p) = f(p)gij(p), ∀ 1 ≤ i, j ≤ m.

As in the proof of Lemma 48.13, the following computations are only

valid at the point p. Nevertheless we omit the p on both sides to avoid

over-complicating the notation. We will also once again suspend our

use of the summation convention, as it will prove confusing in this

proof. Fix some ν ∈ {1, . . . ,m}. Using (48.5) together with the fact

that the first derivatives of gij vanish at p we obtain i.e. (46.5)

δij∂νf = ∂νrij =

m∑
h=1

∂νRhijh. (48.6)

Set i = j and sum over both i and h to obtain

m∂νf =

m∑
i=1

δii∂νf =

m∑
i=1

m∑
h=1

∂νRhiih. (48.7)

Next, using (48.2) with j = h, k = ν and l = i we have

∂iRhpih + ∂hRνiih + ∂νRihih = 0.

Using parts (i) and (ii) of Proposition 47.10 we rewrite this as

∂iRhνih + ∂hRiνhi = ∂νRhiih, (48.8)

and hence summing (48.8) over i and h and inserting into (48.7), we

have

m∂νf =

m∑
i=1

m∑
h=1

∂iRhνih +

m∑
i=1

m∑
h=1

∂hRiνhi

=

m∑
i=1

(
m∑
h=1

∂iRhνih

)
+

m∑
h=1

(
m∑
i=1

∂hRiνhi

)

=

m∑
i=1

∂irνi +

m∑
h=1

∂hrνh

=

m∑
i=1

δνi∂if +

m∑
h=1

δνh∂hf by (48.6)

= ∂νf + ∂νf

= 2∂νf.

Since m 6= 2 we must have ∂νf(p) = 0. Since ν was arbitrary we have

dfp = 0, and then since p was arbitrary it follows that f is locally

constant. Since M is connected, f is constant.

We can repeat the trick we used to obtain the Ricci curvature from i.e. taking the trace

the full curvature. This gives us a tensor of type (0, 0), i.e. a smooth

function.
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Definition 48.24. The scalar curvature scalg ∈ C∞(M) is defined

by

scalg(p) :=

m∑
j=1

Ricg(ej , ej) =

m∑
i=1

m∑
j=1

R∇g (ei, ej , ej , ei),

where (ei) is an orthonormal basis of TpM .

Despite the fact that the scalar curvature is “only” a function, it

still caries a lot of information about the Riemannian manifold (M, g).

Some applications of this are covered on Problem Sheet Q.

Bonus Material for Lecture 48

In several reasonable senses, Einstein metrics are the “best” sort of

Riemannian metric a manifold can carry. Here are three explanations

as to why:

(i) A naive guess as to what a “best” metric might look like would be

to ask that g has constant curvature. But Theorem 48.19 (together

with the Cartan-Hadamard Theorem ??) shows that this is too re-

strictive, in the sense that many manifolds M cannot admit such

a metric. Indeed, if the universal cover M̃ of M is not diffeomor-

phic to Rm or Sm, then no such metric exists. On the other hand,

asking for a metric to have constant scalar curvature is not restric-

tive enough: one can show that if M is any compact manifold of

dimension m ≥ 3 then M admits an infinite dimensional family of

metrics with constant scalar curvature. However the Einstein con-

dition is “just right”, in the sense that when Einstein metrics exist,

they always occur in finite-dimensional families. It is known that

some compact manifolds admit no Einstein metrics, but it is hoped

that “most” high-dimensional manifolds do admit them. This is an

active field of current research,

(ii) Consider the space R1(M) of all Riemannian metrics g on M with

volume 1. This space can be seen as an infinite-dimensional Fréchet

manifold. Now consider the functional See Lecture ?? for the definition
the volume of a metric and for the

integral
∫
M,g f of a function f .S : R1(M)→ R, S(g) :=

∫
M,g

scalg .

This functional is differentiable, and with a little bit of work one

can show that a metric g is a critical point of S if and only if g is i.e. dSg = 0

an Einstein metric. Thus Einstein metrics are obtained by doing

calculus of variations on the space of metrics.

(iii) The name “Einstein metric” comes from physics (no surprises

there!) In general relativity, one posits that physical spacetime is

a four-dimensional manifold equipped with a Lorentz metric (this

is like a Riemannian metric, apart from instead of being positive
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definite, it has signature (3, 1) – it is negative definite on the time

direction). The Einstein Field Equation states that

Ricg −
1

2
scalg·g = T, (48.9)

where T is the so-called stress-energy tensor. If T ≡ 0 then

we obtain the Einstein field equation in a vacuum. In fact

in this case one necessarily has scalg = 0, and thus the Einstein

field equation in a vacuum is equivalent to asking that Ricg = 0.

However from a mathematical point of view, it is then a natural

generalisation the vacuum version of (48.9) to look at what we have

deemed Einstein metrics.

A wonderful book on this subject (and a gateway to advanced Rie-

mannian geometry in general) is the monograph Einstein Manifolds by

Besse. I highly recommend it.

https://www.springer.com/de/book/9783540741206


Will J. Merry

Problem Sheet A

Problem A.1. Let ϕ : M → N be a continuous map between two

smooth manifolds. Prove that the following two statements are equiva-

lent:

(i) For every point p ∈ M , if (U, x) is any chart on M with p ∈ U and

(V, y) is any chart on N with ϕ(U) ⊆ V , the composition

y ◦ ϕ ◦ x−1 : x(U)→ y(V )

is of class Ck.

(ii) For every point p ∈ M , there exists a chart (U, x) on M with

p ∈ U and a chart (V, y) on N with ϕ(U) ⊆ V such that the

composition

y ◦ ϕ ◦ x−1 : x(U)→ y(V )

is of class Ck.

Problem A.2. Prove that the set GL(m) of invertible m×m matrices

is a smooth manifold of dimension m2.

Problem A.3. Let M and N be two smooth manifolds of dimension

m and n respectively. Prove that M × N is a smooth manifold of

dimension m+ n. Deduce that the m-dimensional torus:

Tm := S1 × · · · × S1︸ ︷︷ ︸
m times

⊂ R2m.

is a compact smooth manifold of dimension m.

Problem A.4. Let RPm denote m-dimensional real projective space,

i.e. the space of lines through the origin in Rm+1. Prove that RPm is

a compact smooth manifold of dimension m.

Problem A.5. Let G(k,m) denote the set of k-dimensional linear

subspaces of Rm. We call G(k,m) a Grassmannian manifold. Prove

that G(k,m) is a compact smooth manifold and compute its dimen-

sion.

Problem A.6. Let X denote the union of the x-axis and the y-axis in

R2. Prove that X is not a topological manifold.

Problem A.7. Let Y denote the “pinched 2-dimensional torus”, as

shown in Figure A.1. Prove that Y is not a topological manifold.

Figure A.1: The pinched torus.

Problem A.8. Show that the smooth atlas on R consisting of the

single chart x : R → R given by x(t) = t3 defines a smooth struc-

ture that is different to the “standard” smooth structure (the latter is

the smooth structure containing the identity map as a chart). Prove

however that both the smooth structures belong to the same diffeo-

morphism class.

Last modified: July 17, 2021.

https://www.merry.io
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Bonus Problem(s) for Sheet A

These problem(s) are hard, and are included for enthusiasts only.

Solutions will not be provided.

Problem A.9. Let M be a compact connected topological manifold of

dimension one. Prove that M is homeomorphic to S1.



Will J. Merry

Problem Sheet B

Problem B.1. Let {Va | a ∈ A} be a family of vector spaces indexed

by a set A, and let W be a fixed set. Suppose that for each a ∈ A

we are given a bijection `a : Va → W such that for any a, b ∈ A, the

composition `−1
b ◦ `a : Va → Vb is a linear isomorphism. Prove that

there is a unique vector space structure on W such that each `a is a

linear isomorphism.

Problem B.2. Let M be a smooth manifold of dimension m with This problem is non-examinable.

maximal smooth atlas X. Given a point p ∈ M , let Xp ⊂ X denote the

set of charts (U, x) such that p ∈ U . Define an equivalence relation on

Rm × Xp by saying

(ξ, x) ∼ (ζ, y) ⇔ D(y ◦ x−1)(x(p))ξ = ζ.

(i) Prove that this is indeed a well-defined equivalence relation.

(ii) Write [ξ, x] denote the equivalence class of (ξ, x), and let TpM
denote the set of equivalence classes. Prove that for every x ∈ Xp

the map `x : Rm → TpM given by

`xξ := [ξ, x]

is a bijection. Deduce that TpM admits a unique vector space struc-

ture such that each `x is a linear isomorphism.

(iii) Let (U, x) ∈ Xp, and let ˜̀
x : Rm → TpM denote the linear isomor-

phism defined by

˜̀
xei =

∂

∂xi

∣∣∣
p
.

Prove that there exists a linear isomorphism κp : TpM → TpM

which in addition satisfies

κp ◦ `x = ˜̀
x,

for every (U, x) ∈ Xp. Deduce that TpM is another equivalent way

to define the tangent space of a manifold.

Problem B.3. Let E and F be vector spaces and assume that ` : E →
F is a linear map. Prove that for any p ∈ E the following diagram

commutes:

E F

TpE T`pF

`

Jp J`p

D`(p)

Problem B.4. Let M be a smooth manifold of dimension m. Prove

that the cotangent bundle T ∗M is naturally a smooth manifold of

dimension 2m.

Last modified: July 17, 2021.

https://www.merry.io
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Bonus Problem(s) for Sheet B

These problem(s) are hard, and are included for enthusiasts only.

Solutions will not be provided.

Recall from Proposition 1.32 that a locally Euclidean space M is

a topological manifold if and only if it is Hausdorff, paracompact,

and has at most countably many components. The following three

problems show that no two of these conditions imply the third.

Problem B.5. Consider the subspace S := R × {−1} ∪ R × {1} ⊆ R2

together with its subspace topology and define an equivalence relation

on S by setting

(u1, v1) ∼ (u2, v2) ⇔ u1 = u2 and u1, u2 6= 0.

Equip M = S/ ∼ with the quotient topology. Prove that M is locally

Euclidean and paracompact, but not Hausdorff.

Problem B.6. Consider R2 as a set and equip it with the topology T

generated by the basis

B = {U × {a} | U ⊆ R open, a ∈ R} .

Define

xa : R× {a} → R, xa(p, a) = p

and set X = {xa | a ∈ R}. Prove that the topological space (R2,T)

is locally Euclidean, Hausdorff and paracompact, but that it has an

uncountable number of connected components.

Problem B.7. Let H ⊂ R2 be the right half plane

H :=
{

(u, v) ∈ R2 | u > 0
}
,

endowed with the subspace topology from R2. Given c ∈ R, let Mc ⊂
R3 be the set

Mc := {(u, v, c) | u ≤ 0} ,

endowed with the subspace topology from R3. Then set

M := H t
⊔
c∈R

Mc,

Next, given a, b, c, ε ∈ R with a < b and ε > 0, let

U(a, b, c, ε) := {(u, v) ∈ H | 0 < u < ε, c+ au < v < c+ bu} ⊂ H,

and

V (a, b, c, ε) := {(u, v, c) | −ε < u ≤ 0, a < v < b} .

Define a topology on M by declaring that a basis is given by all sets of

the following three forms:

(i) open sets in H,

(ii) open sets in intMa,

(iii) each union U(a, b, c, ε) ∪ V (a, b, c, ε).

Prove that M is locally Euclidean, connected and Hausdorff but not

paracompact.



Will J. Merry

Problem Sheet C

Problem C.1. Let M and N be smooth manifolds. Prove that for all

(p, q) ∈M ×N there is a canonical isomorphism

T(p,q)(M ×N) = TpM × TqN.

Problem C.2. Let ϕ : M → N be a smooth map. Prove that

Dϕ : TM → TN is also smooth. Prove that if ϕ : M → N is an

embedding then so is Dϕ : TM → TN .

Problem C.3. Let ϕ : M → N be an injective immersion with M

compact. Prove that ϕ is an embedding. Give an example to show

that this need not be true if M is not compact.

Problem C.4. Let O be an open subset in Rm and suppose f : O →
R is smooth. Define g : O → Rm+1 by

g(x) = (x, f(x)).

Prove that g is a smooth embedding, and hence that g(O) is a smooth We call g(O) the graph of f .

embedded m-dimensional submanifold of Rm+1.

Problem C.5. Let i : Sm ↪→ Rm+1 denote the inclusion. Prove that

Di(p)[TpS
m] = Jp(p⊥),

where Jp : Rm+1 → TpRm+1 is the dash-to-dot map and

p⊥ :=
{
q ∈ Rm+1 | 〈p, q〉 = 0

}
,

for 〈·, ·〉 the standard Euclidean dot product.

Problem C.6. Let M be an embedded submanifold of Rn. We define This problem is non-examinable.

the normal space to M at p to be the (n−m)-dimensional subspace

NorpM ⊂ TpRn consisting of all vectors that are orthogonal to TpM

with respect to the Euclidean dot product. We define the normal

bundle of M as the set

NorM := {(p, ξ) ∈ TRn = Rn × Rn | p ∈M, ξ ∈ NorpM} .

Prove that NorM is an embedded n-dimensional submanifold of

TRn = R2n.

Problem C.7. Let ϕ : M → N be a smooth map. Assume that the

rank of ϕ is constant on all of M .

(i) Assume that ϕ is injective. Prove that ϕ is an immersion.

(ii) Assume that ϕ is surjective. Prove that ϕ is a submersion.

(iii) Assume that ϕ is bijective. Prove that ϕ is a diffeomorphism.

Last modified: July 17, 2021.

https://www.merry.io
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Bonus Problem(s) for Sheet C

These problem(s) are hard, and are included for enthusiasts only.

Solutions will not be provided.

Problem C.8. Let ϕ : M → N be smooth, and let L ⊂ N be an

embedded submanifold. We say that ϕ is transverse and regular at

L if

Dϕ(p)(TpM) + Tϕ(p)L = Tϕ(p)N, ∀ p ∈ ϕ−1(L).

Assume that ϕ−1(L) 6= ∅. Prove that if ϕ is transverse and regular at The Implicit Function Theorem 6.10

is the special case where L is a point.L then ϕ−1(L) is a smooth embedded submanifold of M of dimension

m− n+ l.

Problem C.9. Let M be a smooth manifold and let N denote a

covering space of M . Prove that N is a topological manifold, and

moreover that there exists a unique smooth structure on N such that

N is a smooth manifold and the covering projection π : N → M is

smooth.



Will J. Merry

Problem Sheet D

Problem D.1. Let O ⊂ Rm be an open set.

(i) Prove that the dash-to-dot maps induce a diffeomorphism between

TO and O× Rm.

(ii) Prove that there is a bijective correspondence between vector fields

on O and smooth functions O → Rm. Namely, given a vector field

X associate the function f defined by

f(p) := J−1
p (X(p)), ∀ p ∈ O.

(iii) Let X and f be associated as above, and let γ be a smooth curve

in O. Prove that γ is an integral curve of f in the sense of (9.1), i.e.

γ′ = f(γ), if and only if γ is an integral curve of X in the sense of

(9.2), i.e. γ̇ = X(γ).

Problem D.2. Let M be a smooth manifold, let p ∈ M , and let

ξ ∈ TpM . Let U be any open set containing p. Prove that there exists

a vector field X ∈ X(U) such that X(p) = ξ.

Problem D.3. Let M be a smooth manifold and let W ⊂ M be a

non-empty open set. Prove that the Lie bracket [·, ·] on X(W ) satisfies

the Jacobi identity.

Problem D.4. Let M be a smooth manifold and let (U, x) be a chart

on M with local coordinates (xi). Fix X,Y ∈ X(U), and write X =

Xi ∂
∂xi and Y = Y i ∂

∂xi . Prove that

[X,Y ] =

(
Xi ∂Y

j

∂xi
− Y i ∂X

j

∂xi

)
∂

∂xj
,

where ∂Y j

∂xi and ∂Xj

∂xi are the functions from Definition 8.4.

Problem D.5. Let M be a smooth manifold and let W ⊂ M be a

non-empty open set. Let X,Y ∈ X(W ), and let f, g ∈ C∞(W ). Prove

that

[fX, gY ] = fg[X,Y ] + fX(g)Y − gY (f)X.

Problem D.6. Let ϕ : M → N be a smooth map. Let X ∈ X(M) and

Y ∈ X(N). We say that X and Y are ϕ-related if If ϕ is a diffeomorphism then any

X ∈ X(M) is ϕ-related to ϕ∗X.

Dϕ(p)X(p) = Y (ϕ(p)), ∀ p ∈M.

(i) Prove that X ∈ X(M) and Y ∈ X(N) are ϕ-related if and only if for

every open set V ⊂ N and every smooth function f ∈ C∞(V ), one

has

X(f ◦ ϕ) = Y (f) ◦ ϕ.

(ii) Let Xi ∈ X(M) and Yi ∈ X(N) for i = 1, 2 be vector fields. Assume

Xi is ϕ-related to Yi for each i = 1, 2. Prove that [X1, X2] is ϕ-

related to [Y1, Y2].
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Problem D.7. Let M ⊂ N be an (immersed or embedded) submani- This problem is non-examinable.

fold and let p ∈ M . We say that a vector field Y ∈ X(N) is tangent

to M at p if Y (p) ∈ TpM ⊂ TpN . We say Y is tangent to M if it is

tangent to M at every point p ∈M .

(i) Assume M ⊂ N is an embedded submanifold. Prove that Y ∈ X(N)

is tangent to M if and only if Y (f)|M ≡ 0 for every function f ∈
C∞(N) such that f |M ≡ 0.

(ii) Now assume M ⊂ N is merely an immersed submanifold. Let

ι : M ↪→ N denote the inclusion. Assume that Y ∈ X(N) is tangent

to M . Prove there exists a unique X ∈ X(M) such that X is ı-

related to Y .

(iii) Continue to assume that M ⊂ N is an immersed submanifold.

Suppose Y1, Y2 ∈ X(N) are tangent to M . Prove that [Y1, Y2] is

tangent to M .

Bonus Problem(s) for Sheet D

These problem(s) are hard, and are included for enthusiasts only.

Solutions will not be provided.

This question asks you to remove the compactness hypothesis from

Theorem 7.2. This result is commonly known as the Weak Whitney

Embedding Theorem.

Problem D.8. Let M be a smooth manifold of dimension m. Prove

that there exists a proper embedding ϕ : M → R2m+1.

The next problem shows that the Strong Whitney Embedding

Theorem 7.1 is sharp.

Problem D.9. Let m = 2k. Prove that RPm does not smoothly

embed in R2m−1.



Will J. Merry

Problem Sheet E

Problem E.1. Let J0 ∈ Mat(2n) denote the matrix

J0 :=

(
0 −I
I 0

)
,

where I is the n × n identity matrix. The symplectic linear group

Sp(2n) consists of the matrices A such that ATJ0A = J0. Prove that

Sp(2n) is a Lie group. Compute its dimension, and compute its Lie

algebra sp(2n).

Problem E.2. Let G be a Lie group with Lie algebra g. Suppose Here Φξt : G → G denotes the flow of

the unique left-invariant vector field
Xξ satisfying Xξ(e) = ξ.

γ : R → G be a smooth curve with γ(0) = e. Set ξ := γ̇(0). Prove that

γ is a one-parameter subgroup if and only if

Φξt = rγ(t)

(this is an equality of diffeomorphisms of G).

Problem E.3. Prove that the Lie bracket on gl(n) is given by matrix

commutation, i.e.

[A,B] = AB −BA, ∀A,B ∈ gl(n) = Mat(n).

Problem E.4. Let ϕ : M → N be a smooth map between two smooth

manifolds. Let X ∈ X(M) and Y ∈ X(N), and assume X and Y

are ϕ-related in the sense of Problem D.6. Let Φt and Ψt denote the

respective flows, with domains Mt ⊂ M and Nt ⊂ N respectively.

Prove that ϕ(Mt) ⊂ Nt and that

Ψt ◦ ϕ = ϕ ◦ Φt, on Mt.

Deduce that if ϕ is a diffeomorphism then for any vector field X with

flow Φt, the flow of ϕ∗X is given by ϕ ◦ Φt ◦ ϕ−1.

Problem E.5. Let X and Y be vector fields on a smooth manifold M This problem is non-examinable.

with flows Φt and Ψt respectively. Prove that [X,Y ] ≡ 0 if and only if

the two flows commute, i.e. Φt ◦Ψs = Ψs ◦ Φt for all s, t small.

Problem E.6. Prove that if Lie group is abelian then its Lie algebra On Problem Sheet F you will prove

that if a connected Lie group has

abelian Lie algebra, then it is an
abelian Lie group.

is abelian.

Problem E.7. Let G be a Lie group and suppose H is a subgroup of
This problem is non-examinable.

G which is also an embedded submanifold. Prove that H is closed in

G (as a subspace).
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Bonus Problem(s) for Sheet E

These problem(s) are hard, and are included for enthusiasts only.

Solutions will not be provided. Both Rm and the torus Tm have the

abelian Lie algebra Rm. This shows that the functor G 7→ g from the

category of Lie groups to the category of Lie algebras is not injective.

If however we restrict to the subcategory of simply connected Lie

groups, this problem goes away:

Problem E.8. Let G and H be simply connected Lie groups with Lie

algebras g and h. Assume g and h are isomorphic (as Lie algebras).

Prove that G and H are isomorphic as Lie groups.
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Problem Sheet F

Problem F.1.

(i) Let M be a smooth manifold. Assume there exist vector fields

X1, . . . , Xm ∈ X(M) such that {Xi(p)} is a basis of TpM for every

p ∈ M . Prove that the tangent bundle TM is diffeomorphic to

M × Rm.

(ii) Let G be a Lie group with Lie algebra g. Prove that TG is diffeo-

morphic to G× g.

Problem F.2. Let A ∈ gl(m). Prove that the matrix exponential This problem is non-examinable.

eA :=

∞∑
k=0

1

k!
Ak

converges and defines an element of GL(m). Prove that A 7→ eA is the

exponential map of GL(m).

Problem F.3. Let G be a Lie group with Lie algebra g. Prove that

for ξ, ζ ∈ g one has adξ(ζ) = [ξ, ζ].

Problem F.4. Let σ be a smooth action of a Lie group G on a

smooth manifold M .

(i) Prove that σ is proper if and only if the following condition holds:

if (pk) is a sequence in M and (gk) is a sequence in G such that

both (pk) and (σgk(pk)) converge, then a subsequence of (gk) con-

verges.

(ii) Deduce that if G is compact then every smooth action is proper.

Problem F.5. Let G be a Lie group and H be a closed subgroup

(possibly equal to G). Let H act on G via left (or right) translations.

Prove that this action is proper.

Problem F.6. Let σ be a proper smooth action of a Lie group G on

a smooth manifold M . Prove that the orbits orbσ(p) are closed subsets

of M .

Problem F.7. Let ∆ be an integrable distribution on a smooth mani-

fold M , and let L be a connected integral manifold of ∆. Assume that

L is closed in M . Prove that L is a leaf of foliation induced by ∆.

Problem F.8. Let ϕ : M → N be a surjective submersion. Prove that

the connected components of the preimages ϕ−1(p) as p ranges over N

defines an (m− n)-dimensional foliation of M .

Problem F.9. Let G be a connected Lie group with Lie algebra g. This is a partial converse to Problem
E.6.Prove that the centre of G is the kernel of the adjoint representation

Ad: G→ GL(g). Deduce that G is abelian if and only if g is abelian.
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Bonus Problem(s) for Sheet F

These problem(s) are hard, and are included for enthusiasts only. So-

lutions will not be provided. A topological group G is a topological

space that is also a group in the algebraic sense, with the property

that the group multiplication

µ : G×G→ G, µ(g, h) = gh,

and group inversion

i : G→ G, i(g) = g−1,

are both continuous maps. The goal of the next problem is to show

that if G is a topological space that simultaneously carries the struc-

ture of a topological manifold and a topological group, then G admits

at most one diffeomorphism class of smooth structures that turns G

into a Lie group.

Problem F.10.

(i) Let G be a Lie group. Suppose γ : R → G is a continuous group

homomorphism. Prove that γ is necessarily smooth, and hence is a

one-parameter subgroup.

(ii) Let G and H be Lie groups, and suppose ϕ : G→ H is a continuous

group homomorphism. Prove that ϕ is automatically smooth, and

hence is a Lie group homomorphism. Hint: Use the previous part.

(iii) Let G be a topological space which is simultaneously a topological

group and a topological manifold. Prove that G admits at most one

diffeomorphism class of smooth structures that turns G into a Lie

group.

Remark: The converse to (iii) was Hilbert’s Fifth Problem, famously

posed by David Hilbert in 1900. It was eventually proved in 1952 by

Montgomery and Zippen.

Problem F.11. Let G be a connected space that satisfies all the

conditions for a Lie group apart from not necessarily being second

countable. Prove that G is automatically second countable (and hence

a Lie group).

Problem F.12. Let G be a connected Lie group. Let Aut(G) denote

the set of Lie group isomorphisms ϕ : G → G. Prove that Aut(G)

admits the structure of a Lie group. Hint: First prove this in the case

where G is simply connected.

https://en.wikipedia.org/wiki/Hilbert%27s_fifth_problem
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Problem Sheet G

Problem G.1. Show that the real projective space RPm−1 can be

seen as the homogeneous space SO(m)
/

O(m− 1).

Problem G.2. Let σ be a smooth free action of G on M . Assume This question is a partial converse to
the Quotient Manifold Theorem 13.6.that the quotient space M/G admits the structure of a smooth man-

ifold such that the quotient map ρ : M → M/G is a smooth submer-

sion. Prove that σ is a proper action.

Problem G.3. Let π1 : P → M and π2 : Q → N be two G-principal

bundles. Suppose (ϕ,Φ) is a principal bundle morphism from P to

Q such that ϕ is a diffeomorphism. Prove that Φ is also a diffeomor-

phism.

Problem G.4. Let σ be an effective action of a Lie group G on a

smooth manifold L. Assume we are given two fibre bundles

L→ E
π1−→M, and L→ F

π2−→M

Let {Ua | a ∈ A} be an open cover of M such that both E and F This can always be achieved by taking

intersections.admit G-bundle atlases over the Ua. Let

g1
ab : Ua ∩ Ub → G, and g2

ab : Ua ∩ Ub → G

denote the transition functions of E and F with respect to these bun-

dle atlases. Prove that E and F are isomorphic as (G, σ)-fibre bundles

if and only if there exists a family fa : Ua → G of smooth functions

such that

fa(p) ◦ g1
ab(p) = g2

ab(p) ◦ fb(p), ∀ p ∈ Ua ∩ Ub, ∀ a, b ∈ A.

Problem G.5. Let V → E
π−→ M be a vector bundle. Prove that it

is possible to reduce the structure group from GL(V ) to O(V ). Find

an example where it is not possible to reduce the structure group from

GL(V ) to GL+(V ).

Problem G.6. Prove that there are exactly two vector bundles of This problem is non-examinable.

rank 1 over S1 (up to vector bundle isomorphism).

Problem G.7. Prove that the Klein bottle is a fibre bundle over S1 This problem is non-examinable.

with fibre S1. Prove however that the Klein bottle is not a principal

S1-bundle over S1.

Problem G.8. Find a non-trivial principal S1-bundle over RP 2. This problem is non-examinable.

Problem G.9. Suppose σ is a smooth transitive action of a Lie group

G on M , so that M is the homogeneous space G/H for an appropriate

subgroup H of G. Prove that the subgroup of G acting trivially on

M is the largest normal subgroup N(H) of G contained in H. Let G

and H denote the quotient groups G/N(H) and H/N(H) respectively.

Prove that G acts effectively and transitively on M , and M is the

homogeneous space G/H.
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Problem G.10. Let π : P → M be a principal G-bundle with corre- This problem is non-examinable.

sponding right action τ . Let H ⊂ G be a Lie subgroup, and let Q ⊂ P

be a subset such that:

(i) The restriction π|Q : Q→M is surjective.

(ii) If q ∈ Q and h ∈ H then τh(q) ∈ Q.

(iii) For all p ∈M , the action of H on Q ∩ Pp is transitive.

(iv) For all p ∈ M , there exists a neighbourhood U of p and a smooth

local section ψ : U → P of π such that ψ(q) ∈ Q for all q ∈ U .

Prove that π|Q : Q→M is a principal H-bundle, and that moreover Q

is a principal H-subbundle of P .
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Problem Sheet H

Problem H.1. Let V,W and U be vector spaces. Prove there are

natural isomorphisms V ⊗W ∼= W⊗V and (U⊗V )⊗W ∼= U⊗(V ⊗W ).

Problem H.2. Let V and W be vector spaces. Prove that for any

A ∈ Alth(V,W ) there is a unique linear map a :
∧h
V → W such that

the following diagram commutes:

h times︷ ︸︸ ︷
V × · · · × V W

∧h
V

A

∧ a

Prove moreover that
∧h
V is uniquely characterised by this property.

Problem H.3. Let V be a vector space of dimension n with basis

{e1, . . . , en}. Prove that

{ei1 ∧ · · · ∧ eih | 1 ≤ i1 < · · · < ih ≤ n}

is a basis of
∧h
V and

∧h
V = 0 for h > n. Deduce that dim

∧h
V =

(
n
h

)
and that dim

∧
V = 2n.

Problem H.4. Let ϕ : M → N be a smooth map, and suppose

L→ E
π−→ N is a fibre bundle. Set

ϕ∗E :=
{

(p, u) ∈M × E | ϕ(p) = π(u)
}
,

with projection pr1 : ϕ∗E →M .

(i) Prove that ϕ∗E is a fibre bundle over M with fibre L such that

(ϕ,pr2) is a fibre bundle morphism:

ϕ∗E E

M N

pr2

pr1 π

ϕ

(ii) Prove that

T(p,u)(ϕ
∗E) =

{
(ξ, ζ) ∈ TpM × TuE | Dϕ(p)ξ = Dπ(p)ζ

}
.

(iii) Suppose ψ : K → M is another smooth map. Prove that ψ∗(ϕ∗E)

and (ϕ ◦ ψ)∗E are isomorphic fibre bundles over K.

(iv) Assume now that E is has structure group G. Prove that ϕ∗E has i.e. E is a (G, σ)-fibre bundle for some
effective action σ of G on L.structure group a Lie subgroup of G. Deduce that the pullback of

a vector bundle is a vector bundle, and the pullback of a principal

bundle is a principal bundle.
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(v) Prove that the isomorphism from part (iii) can be taken to be an

isomorphism of G-fibre bundles (or a subgroup thereof).

Problem H.5. Let L→ E
π1−→ M and K → F

π2−→ N be fibre bundles

with structure groups G and H respectively. Prove that (π1, π2) : E ×
F → M × N is another fibre bundle with fibre L × K and structure

group G×H. We call this the external product of E and F .

Problem H.6. Let ι : M → M ×M denote the diagonal map p 7→ This problem is non-examinable.

(p, p).

(i) Let E and F be two vector bundles over M . Prove that

E ⊕ F = ι∗(E × F ).

(ii) Let P and Q be two principal bundles over M . Prove that

P ? Q = ι∗(P ×Q).

Problem H.7. Let E be a vector bundle over M and F a vector

bundle over N . Suppose Ψ: E → F is any smooth map that maps

each fibre Ep for p ∈ M linearly onto some fibre Fq for q ∈ N . Prove

that Ψ = Φ2 ◦ Φ1 where Φ1 is a vector bundle homomorphism and Φ2

is a vector bundle isomorphism along a map M → N .

Problem H.8. Let V → E
π1−→ M and W → F

π2−→ M be two vector

bundles over M , and let Φ: E → F be a vector bundle homomor-

phism.

(i) Assume Φ is injective on each fibre. Consider the quotient vector

space

Ep := Fp
/

Φp(Ep).

Prove that E :=
⊔
p∈M Ep is a vector bundle over M with fibre

W/V . Deduce that im Φ is a vector subbundle of F .

(ii) Assume that Φ is surjective on each fibre. Let

Zp := ker Φp ⊂ Ep.

Prove that Z :=
⊔
p∈M Zp is a vector bundle over M . What is the

fibre?

Problem H.9. Let ϕ : M → N be a smooth map and suppose π : E → This problem is non-examinable.

N is a vector bundle, which we illustrate pictorially as:

E

M N

π

ϕ

(δ)

A solution of the diagram (δ) is a vector bundle π1 : F → M together

with a vector bundle morphism Φ: F → E along ϕ:

E1 E

M N

Φ

π1 π

ϕ
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As we have seen, one possible solution is the pullback bundle ϕ∗E:

ϕ∗E E

M N

pr2

pr1 π

ϕ

The aim of this problem is to prove that the pullback bundle can be

characterised as a solution to a universal mapping problem: namely,

that ϕ∗E is the “most efficient” solution in the following sense:

Suppose π1 : F → M and Φ is any solution to (δ). Prove there

exists a unique vector bundle homomorphism Ψ: F → ϕ∗E such that

the following diagram commutes:

F

ϕ∗E E

M N

π1

Φ
Ψ

pr2

pr1 π

ϕ

Prove moreover that ϕ∗E is uniquely determined by this property.

Explicitly this means that if π̃ : Ẽ → M and Φ̃ is another solution

to the diagram (δ) with the property that for any solution π1 : F →
M and Φ of (δ) there exists a unique vector bundle homomorphism

Ψ̃: F → Ẽ such that the following commutes:

F

Ẽ E

M N

π1

Φ

Ψ̃

Φ̃

π̃ π

ϕ

then in fact Ẽ is isomorphic as a vector bundle over M to ϕ∗E.

Bonus Problem(s) for Sheet H

These problem(s) are hard, and are included for enthusiasts only.

Solutions will not be provided.

Problem H.10. Let M be a smooth compact connected manifold of This problem is relevant in gauge
theory; a topic we hope to return to

in Differential Geometry II.
dimension 4. Let G = SU(2). How “many” isomorphism classes of

principal G-bundles P →M are there?
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Problem Sheet I

Problem I.1. Let ϕ : M → N be a smooth map. This problem is non-examinable.

(i) Let A ∈ Th,k(M) denote a tensor of type (h, k). Let (U, x) and

(V, y) denote two charts on M with U ∩ V 6= ∅. Then one can write

A = f i1···ihj1···jk
∂

∂xi1
⊗ · · · ⊗ ∂

∂xih
⊗ dxj1 ⊗ · · · ⊗ dxjk

and

A = gi1···ihj1···jk
∂

∂yi1
⊗ · · · ⊗ ∂

∂yih
⊗ dyj1 ⊗ · · · ⊗ dyjk

for smooth functions f i1···ihj1···jk ∈ C∞(U) and gi1···ihj1···jk ∈ C∞(V ).

Investigate the relationship between

f i1···ihj1···jk |U∩V and gi1···ihj1···jk |U∩V .

(ii) Let ω ∈ Ωk(M) denote a differential k-form. Let (U, x) and (V, y)

denote two charts on M with U ∩ V 6= ∅. Then one can write

ω = fi1···ikdx
i1 ∧ · · · ∧ dxik

and

ω = gi1···ikdy
i1 ∧ · · · ∧ dyik

for smooth functions fi1···ik ∈ C∞(U) and gi1···ik ∈ C∞(V ). Investi-

gate the relationship between

fi1···ik |U∩V and gi1···ik |U∩V .

(iii) Assume ϕ is a diffeomorphism, and let A ∈ Th,k(N). Let (U, x) be

a chart on M and (V, y) a chart on N with ϕ(U) ⊂ V . Write

ϕ∗A = f i1···ihj1···jk
∂

∂xi1
⊗ · · · ⊗ ∂

∂xih
⊗ dxj1 ⊗ · · · ⊗ dxjk

and

A = gi1···ihj1···jk
∂

∂yi1
⊗ · · · ⊗ ∂

∂yih
⊗ dyj1 ⊗ · · · ⊗ dyjk

for smooth functions f i1···ihj1···jk ∈ C∞(U ∩ ϕ−1(V )) and gi1···ihj1···jk ∈
C∞(V ). Investigate the relationship between

f i1···ihj1···jk and gi1···ihj1···jk .

(iv) Let ω ∈ Ωk(N). Let (U, x) be a chart on M and (V, y) a chart on N

such that ϕ(U) ⊂ V . Then one can write

ϕ∗ω = fi1···ikdx
i1 ∧ · · · ∧ dxik

and

ω = gi1···ikdy
i1 ∧ · · · ∧ dyik

for smooth functions fi1···ik ∈ C∞(U ∩ ϕ−1(V )) and gi1···ik ∈
C∞(V ). Investigate the relationship between

fi1···ik and gi1···ik .

(v) Conclude that local coordinates are horrible.
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Problem I.2. Let π : E → M be a vector bundle. An operator

ζ : Γ(E) → Γ(E) is said to satisfy the Leibniz rule if there exists a

vector field X on M such that for any f ∈ C∞(M) and s ∈ Γ(E) one

has

ζ(fs) = (Xf)s+ fζ(s).

Prove that an operator satisfying the Leibniz rule is a local operator

but – provided X 6= 0 – is not a point operator.

Problem I.3. Let M be a smooth manifold and let E1, . . . , Ek and

E be vector bundles over M . Let ζ : Γ(E1) × · · · × Γ(Ek) → Γ(E) be

a C∞(M)-multilinear operator. Prove that for each p ∈ M there is a

unique R-multilinear map

Φp : E1|p × · · · × Ek|p → Ep

such that for all si ∈ Γ(Ei) one has

Φp(s1(p), . . . sk(p)) = ζ(s1, . . . , sk)(p).

Problem I.4. Let M be a smooth manifold and let U ⊂ M be a non-

empty open set. Prove that there is a canonical identification between

Th,k(U) and C∞(U)-multilinear functions

Ω1(U)× · · · × Ω1(U)︸ ︷︷ ︸
h copies

×
k copies︷ ︸︸ ︷

X(U)× · · · × X(U)→ C∞(U).

Problem I.5. This problem introduces the vertical bundle of a fibre This problem is non-examinable.

Vertical bundles will play a major role

in Differential Geometry II.
bundle.

(i) Let π : E →M be a fibre bundle with fibre L. Let

V E :=
⊔
u∈E

{
kerDπ(u) : TuE → Tπ(u)M

}
with projection map πV : V E → E. Prove that V E is a vector

bundle over E of rank l = dimL.

(ii) Assume now that π : E → M is a vector bundle. Prove that the

vertical bundle V E is isomorphic as a vector bundle to the pullback

bundle π∗E → E.

(iii) Continue to assume that π : E → M is a vector bundle. Prove that

the composition π ◦ πV : V E → M is another vector bundle over M

which is isomorphic to the direct sum bundle E ⊕ E.

(iv) Continue to assume that π : E → M is a vector bundle. View M as

an embedded submanifold of TM via the zero section. Prove that

the composite bundle π ◦ πV : V E → M is a vector subbundle of

Dπ : TE → TM .

Problem I.6. Let M be a smooth manifold.

(i) Suppose A ∈ T1,1(M) ∼= Γ(End(TM)). Prove there exists a unique

tensor derivation ζA on M with the property that ζA(Y )(p) =

Ap(Y (p)) for any vector field Y and satisfies ζA(f) = 0 for any

function f .
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(ii) Let ξ be an arbitrary tensor derivation. Prove that there exists a

vector field X on M and A ∈ T1,1(M) such that ξ = LX + ζA.

Deduce that the space of tensor derivations on M can be identified

with X(M)× Γ(End(TM)).

Definition. Let X ∈ X(M) with flow Φt. Define an operator L̃X on Proposition 22.14 states that L̃X
coincides with the Lie derivative LX .
The proof of Proposition 22.14 uses

Problem I.7. Thus to avoid a circular

argument, you cannot use the fact
that L̃X = LX while solving Problem

I.7!

T(M) by

L̃XA :=
d

dt

∣∣∣
t=0

Φ∗tA = lim
t→0

Φ∗tA−A
t

.

Problem I.7. Let (h0, k0), (h1, k1) and (h2, k2) be three pairs of non-

negative integers. Suppose we are given a C∞(M)-bilinear operator This problem is non-examinable.

A : Th0,k0(M)×Th1,k1(M)→Th2,k2(M).

Assume in addition that A has the property that if ϕ : U → V is a

local diffeomorphism between open sets of M then the corresponding

local operators

ϕ∗
(
AV (A,B)

)
= AU (ϕ∗A,ϕ∗B).

Prove that for every vector field X on M , one has

L̃X
(
A(A,B)

)
= A

(
L̃XA,B

)
+A

(
A, L̃XB

)
.

Bonus Problem(s) for Sheet I

These problem(s) are hard, and are included for enthusiasts only.

Solutions will not be provided.

Problem I.8. Let R be a commutative ring and let V be a finitely

generated projective R-module. Prove that for all h, k ≥ 0,

Th,kV ∼= Multk,h(V ).

Problem I.9. Let π : E → M be a vector bundle and let U ⊂ M

be an arbitrary open set (possibly equal to M). Prove that the space

Γ(U,E) is a finitely generated projective C∞(U)-module.



Will J. Merry

Problem Sheet J

Problem J.1. Let E and F be two vector bundles over M and let

{Ua | a ∈ A} be an arbitrary open covering of M . Suppose we are

given a collection

{ζa : Γ(Ua, E)→ Γ(Ua, F ) | a ∈ A}

of local operators such that

ζUa∩Uba ≡ ζUa∩Ubb , if Ua ∩ Ub 6= ∅.

Prove there exists a unique local operator ζ : Γ(E)→ Γ(F ) such that

ζUa = ζa, ∀ a ∈ A.

Problem J.2. Let ϕ : M → N denote a smooth map. Let A ∈
T0,k(N). Using the Tensor Criterion Theorem 21.5, regard A as a

C∞(N)-multilinear function

X(N)× · · · × X(N)︸ ︷︷ ︸
k copies

→ C∞(N).

and similarly regard ϕ∗(A) as a C∞(M)-multilinear function

X(M)× · · · × X(M)︸ ︷︷ ︸
k copies

→ C∞(M).

Suppose Xi ∈ X(M) is ϕ-related to Yi ∈ X(N) for i = 1, . . . , s. Prove

that

(ϕ∗A)(X1, . . . , Xk) = A(Y1, . . . , Yk) ◦ ϕ

as functions M → N .

Problem J.3. Let V be a vector space and suppose ω ∈
∧h
V ∗ and

θ ∈
∧k
V ∗. Let vi ∈ V for i = 1, . . . , h + k. Prove that if we identify ω

with an element of Alth(V ), θ with an element of Altk(V ), and ω ∧ θ
with an element of Alth+k(V ), one has:

(ω∧θ)(v1, . . . , vh+k) =
1

h!k!

∑
%∈Sh+k

sgn(%)ω
(
v%(1), . . . , v%(h)

)
θ
(
v%(h+1), . . . , v%(h+k)

)
or equivalently

(ω∧θ)(v1, . . . , vh+k) =
∑

%∈Shuffle(h,k)

sgn(%)ω
(
v%(1), . . . , v%(h)

)
θ
(
v%(h+1), . . . , v%(h+k)

)
.

Problem J.4. Let ω ∈
∧h
V ∗ and θ ∈

∧k
V ∗. Prove that

iv(ω ∧ θ) = ivω ∧ θ + (−1)hω ∧ ivθ.

Problem J.5. Let (M, o) be an oriented smooth manifold with

boundary. Let µ ∈ Ωm(M) be a volume form representing o. Let

X be an outward pointing section.
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(i) Prove that iXµ restricts to define a volume form on ∂M .

(ii) Let ∂o denote the orientation of ∂M determined by iXµ. Prove

that (as the notation suggests) ∂o only depends on o, and not on

the particular choice of µ and X.

Problem J.6.

(i) Prove that Sm is orientable.

(ii) Prove that any Lie group is orientable.

(iii) Prove that RPm is orientable if and only if n is odd. Hint: Con-

sider the antipodal map x 7→ −x on Sm.

Problem J.7. Let

Rm− := Rmu1≤0, Hm := Rmum≥0.

We can identify both ∂Rm− and ∂Hm with Rm−1. Endow both Rm− and

Hm with their standard orientation they inherit from Rm. Show that Remark: This is the main reason we
take our “standard” half-space to be

Rm− , not Hm, cf. Remark 24.20.
the induced orientation on ∂Rm− is equal to standard orientation on

Rm−1 for all m, but that the induced orientation on ∂Hm agrees with

the standard orientation of Rm−1 only when m is even.

Problem J.8.

(i) Let V be a vector space of dimension n. A symplectic form on V

is an element ω ∈ Alt2(V ) ∼=
∧2
V ∗ which is non-degenerate in the

sense that iv(ω) ≡ 0 if and only if v = 0. Prove that if a symplectic

form exists then n = 2k is necessarily an even number.

(ii) A symplectic manifold is a smooth manifold M equipped with

a closed differential 2-form ω such that ωp is a symplectic form

on TpM for every p ∈ M . Prove that any symplectic manifold is

orientable.

(iii) Let M be a smooth manifold. Define a 1-form Θ ∈ Ω1(T ∗M) on the

cotangent bundle via the formula:

Θp,λ(ζ) = λ
(
Dπ(p, λ)ζ

)
,

for p ∈ M , λ ∈ T ∗pM , and ζ ∈ T(p,λ)T
∗M . Prove that ω := dΘ

is a symplectic form on T ∗M . Thus every cotangent bundle is a

symplectic manifold.

Problem J.9. Let M and N be smooth manifolds. Prove that if M This problem is non-examinable.

has boundary and N does not, then M ×N is a smooth manifold with

boundary. Prove that if both M and N have non-empty boundary,

then M ×N is not a smooth manifold with boundary,
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Bonus Problem(s) for Sheet J

These problem(s) are hard, and are included for enthusiasts only.

Solutions will not be provided.

Problem J.10. After making appropriate modifications, reprove all

results in the course for manifolds with boundary.



Will J. Merry

Problem Sheet K

Problem K.1. A singular k-cube c : Ck → M is said to be degener-

ate if there exists 1 ≤ i ≤ k such that c does not depend on ui. Prove

that if c : Ck → M is a degenerate singular k-cube then
∫
c
ω = 0 for

any ω ∈ Ωk(M).

Problem K.2. Let c : Ck → M be a smooth singular k-cube in M

and let ϕ : Ck → Ck be an orientation preserving diffeomorphism. Let As usual, think of this as meaning
that ϕ is the restriction to Ck of an

orientation preserving diffeomorphism
of some neighbourhood.

c̃ := c ◦ ϕ. Prove that for any ω ∈ Ωk(M), one has∫
c

ω =

∫
c̃

ω.

Problem K.3. Prove that there does not exist a compact symplectic See Problem J.8 if you forgot the
definition of a symplectic manifold.manifold (M,ω) without boundary with the property that ω is exact.

Problem K.4. Find a closed (m − 1)-form on Rm \ {0} that is not

exact.

Problem K.5. Let M be a smooth manifold, let X ∈ X(M), and let

A be a tensor field. Let Φt denote the flow of X. Prove that

d

dt

∣∣∣
t=t0

Φ∗tA = Φ∗t0(LXA).

Problem K.6. Let ϕ : M → N be a diffeomorphism of connected

oriented manifolds and let ω ∈ Ωmc (N). Prove that∫
M

ϕ∗(ω) = ±
∫
N

ω,

where the + signs occurs if and only if ϕ is orientation preserving.

Problem K.7. Let G be a compact connected Lie group.

(i) Prove there exists a unique normalised left-invariant volume Recall G is orientable by part (ii) of

Problem J.6.form µ on G, i.e. a volume form µ such that
∫
G
µ = 1 and l∗gµ = µ

for all g ∈ G.

(ii) This allows us to define the integral of a function on G via:∫
G

f :=

∫
G

fµ, f ∈ C∞(G).

Prove that for all f ∈ C∞(G) and g ∈ G, one has∫
G

f =

∫
G

(f ◦ lg) =

∫
G

(f ◦ rg), ∀ f ∈ C∞(G), g ∈ G.

Problem K.8. For this problem you may assume that for any com- This problem is non-examinable.

pact connected orientable smooth manifold Mm, one has Hm
dR(M) ∼=

R, and that an explicit isomorphism is given by This is a special case of the de Rham
Theorem 27.24.∫

: Hm
dR(M)→ R, [ω] 7→

∫
M

ω.
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Let ϕ : M → N be a smooth map between compact connected ori-

entable smooth manifolds of dimension m. Then ϕ∗ : Hm
dR(N) →

Hm
dR(M) is a linear map between one-dimensional vector spaces, and

hence is multiplication by a number. We call this number the degree

of ϕ. Explicitly,∫
M

ϕ∗ω = deg(ϕ)

∫
N

ω, ω ∈ Ωm(N).

(i) Let q ∈ N denote a regular value of ϕ. Given p ∈ ϕ−1(q), let

sgnp(ϕ) :=

+1, if Dϕ(p) is orientation preserving,

−1, if Dϕ(p) is not orientation preserving.

Prove that

deg(ϕ) =
∑

p∈ϕ−1(q)

sgnp(ϕ).

Thus deg(ϕ) is an integer.

(ii) Prove the Hairy Ball Theorem: if m is even then any vector field

on Sm has at least one zero.

Bonus Problem(s) for Sheet K

These problem(s) are hard, and are included for enthusiasts only.

Solutions will not be provided.

Problem K.9. Enjoy your holidays.



Will J. Merry

Problem Sheet L

Problem L.1. Let π : E → M be a vector bundle, let ∆ denote a

connection on E, and let o : M → E denote the zero section. Prove

that

∆0p = Do(p)(TpM), ∀p ∈M,

where 0p is the zero element of the vector space Ep.

Problem L.2. Let π : E → M be a vector bundle. Prove that a

preconnection ∆ on E is a vector subbundle of TE such that

(πTE , Dπ)|∆ : ∆→ E ⊕ TM

is a vector bundle homomorphism from the composite bundle ∆
πTE−−−→

E
π−→M to the bundle E ⊕ TM .

∆ E ⊕ TM

M M

(πTE ,Dπ)|∆

π◦πTE (π,πTM )

id

Problem L.3. Recall from Problem C.5 that if we let ι : Sm ↪→ Rm+1

denote the inclusion then

Dι(p)(TpS
m) = Jp(p⊥),

where

p⊥ :=
{
q ∈ Rm+1 | 〈p, q〉 = 0

}
,

where 〈·, ·〉 is the standard Euclidean dot product. Use this to prove

that one can identify

T(p,ξ)TS
m =

{
(u, v) ∈ R2m+2 | 〈p, u〉 = 0 = 〈p, v〉+ 〈ξ, u〉

}
.

Prove that

∆(p,ξ) :=
{(
v,−〈ξ, v〉p

)
| v ∈ Rm+1, 〈p, v〉 = 0

}
⊂ T(p,ξ)TS

m

defines a connection on TSm.

Problem L.4. Take m = 2 and use the connection on TSm from

Problem L.3. Let pN = (0, 0, 1) denote the North pole.

(i) Let γ be a great circle. Compute Pγ : Tγ(0)S
2 → Tγ(0)S

2.

(ii) Given s ∈ (−π.π), let

γs(t) :=
(

cos t sin s, sin t sin s, cos s
)

Compute Pγs : Tγs(0)S
2 → Tγs(0)S

2.

Problem L.5. Let σ be a smooth effective left action of a Lie group

G on a smooth manifold L, and suppose L → E
π−→ M is a (G, σ)-fibre

bundle. Let γ : (a, b) → M be a smooth curve. Prove that γ?E →
(a, b) is a trivial bundle.
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Problem L.6. Let π : E → M be a vector bundle, and let ∆ be a

connection on E. Let γ : [a, b] → M be a smooth curve and let t0 ∈
[a, b]. Prove that for any v ∈ Eγ(t0), there exists a unique horizontal

section ρ of E along γ such that ρ(t0) = v.



Will J. Merry

Problem Sheet M

Problem M.1. Let V and W be vector spaces, and suppose f : V →
W is a continuous map which is differentiable at 0 ∈ V and homoge-

neous in the sense that f(cv) = cf(v) for all v ∈ V and c 6= 0. Prove

that f is a linear map.

Problem M.2. Let π : E → M be a vector bundle of rank n with

connection ∆. Fix p ∈M and let {v1, . . . , vn} be a basis of Ep.

(i) Let ψp : Up → Op be a ray parametrisation at p. For ξ ∈ TpM

write γp,ξ(t) := ψp(tξ), as in (29.5). Prove there exists a local

frame {e1, . . . , en} on Up such that ei(p) = vi and such that for all

ξ ∈ TpM , ei ◦ γp,ξ is parallel along γp,ξ.

(ii) Let γ : (−ε, ε) → M be a smooth curve with γ(0) = p and

γ̇(t) 6= 0 for all t ∈ (−ε, ε). Deduce that there exists a local

frame {e1, . . . , en} of E over an open set U containing p such

that ei(p) = vi and such that ei ◦ γ is parallel along γ for each

i = 1, . . . , n.

Problem M.3. Let ∆ be a connection in a vector bundle π : E → M

with associated parallel transport system P and covariant derivative

∇ : X(M)× Γ(E)→ Γ(E).

(i) Define the dual parallel transport system in the dual bundle

E∗ by declaring that a section ν ∈ Γγ(E∗) is parallel if and only if

ν(ρ) is constant for every parallel section ρ ∈ Γγ(E). Prove directly You may skip the verification of

Axiom (iv)’ of Definition 29.11.that this defines a parallel transport system.

(ii) Define the dual covariant derivative operator ∇∗ : X(M) ×
Γ(E∗)→ Γ(E∗) defined by

(∇∗Xσ)(s) = X(σ(s))− σ(∇Xs).

Prove directly that this is a covariant derivative operator in E∗.

(iii) The dual connection on E∗ is the connection ∆∗ whose associ-

ated parallel transport system is the dual parallel transport system

from part (i) and whose associated covariant derivative operator is

the dual covariant derivative operator from part (ii). How does one

define ∆∗ explicitly?

Problem M.4. Let E,F be two vector bundles over M with connec-

tions ∇E and ∇F .

(i) Prove that there is a unique connection on E ⊗ F which on decom-

posable sections r ⊗ s takes the form

∇⊗X(r ⊗ s) := ∇EXr ⊗ s+ r ⊗∇FXs.

(ii) Prove that The connections in part (i) and

part (ii) are consistent with the
connection on the dual bundle from

Problem (ii) under the isomorphism

Hom(E,F ) ∼= E∗ ⊗ F from Corollary
19.14.

(∇Hom
X Φ)(s) := ∇FX(Φ(s))− Φ(∇EXs)

is a connection on Hom(E,F )
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Problem M.5. Let ∇ denote the connection on TSm from Problem

L.3.

(i) Find an explicit formula for the connection map K : T (TSm) →
TSm and for the covariant derivative operator ∇ : X(Sm)×X(Sm)→
X(Sm).

(ii) Let p, q be two points in Sm such that p ⊥ q. Let γ : [0, 2π] → Sm

denote the great circle γ(t) = (cos t)p+(sin t)q. Prove that ∇γT γ̇ = 0,

where T is the vector field ∂
∂t on [0, 2π].

(iii) Prove that Hol∇ = SO(m) (in the sense of Corollary 32.16).

(iv) Compute the curvature tensor R∇.

Problem M.6. Let π : E → M be a vector bundle with connection ∇.

Let F ⊂ E be a vector subbundle such that ∇ is reducible to F . Prove

that ∇ restricts to define a connection on F .

Problem M.7. Suppose ∇ is a connection on the tangent bundle

π : TM → M of a manifold M . Show that for each X ∈ X(M) the

operator ∇X : X(M) → X(M) extends uniquely to define a tensor

derivation ∇X : T(M)→T(M).

Problem M.8. Let π : E → M be a vector bundle over a connected

manifold M , and let ∆ denote a connection on E. Let ψ : M̃ → M

denote the universal covering of M . Prove that ∇ is flat if and only if

ψ∗E → M̃ is the trivial bundle over M̃ and the pullback connection

ψ∗∆ is the trivial connection.

Problem M.9. Let G be a Lie group with Lie algebra g.

(i) Suppose β : g× g→ g is a bilinear map. Prove there exists a unique

connection ∇β on TG → G which satisfies the following condition:

if ξ, ζ ∈ g and Xξ, Xζ denote the corresponding left-invariant vector

fields then

∇βXξ(Xζ) = Xβ(ξ,ζ).

(ii) Prove that this connection is left-invariant in the sense that

(lg)∗(∇βXY ) = ∇β(lg)∗X
((lg)∗(Y )), ∀X,Y ∈ X(G), ∀ g ∈ G.

Deduce that the parallel transport determined by this connection is

left-invariant in the sense that if ρ is a parallel section along a curve

γ then Dlg(γ) ◦ ρ is a parallel section along lg ◦ γ.

(iii) Prove moreover that any such left-invariant connection ∇ deter-

mines such a bilinear map β via

β(ξ, ζ) := ∇Xξ(Xζ)(e),

and hence that there is a bijective correspondence between bilinear

maps g× g→ g and left-invariant connections on TG.



Will J. Merry

Problem Sheet N

Problem N.1. Let π : E →M denote a vector bundle, and let ∇1 and

∇2 denote two connections on E.

(i) Prove that ∇1 −∇2 defines an element Θ ∈ Ω1(M,End(E)).

(ii) If ∆1 and ∆2 are the distributions on E corresponding to ∇1 and

∇2 respectively, prove that for all v ∈ E one has Θ is a 1-form with values in End(E).

Thus for p ∈M , ξ ∈ TpM and v ∈ Ep,

the endomorphism Θp(ξ) can eat v to
produce another element Θp(ξ)(v) in

the fibre Ep.

∆2|v =
{
ζ + Jv

(
Θπ(v)(Dπ(v)ζ)(v)

)
| ζ ∈ ∆1|v

}
where Θ is in the previous part.

(iii) Prove that

R∇2 = R∇1 − d∇1Θ + [Θ,Θ],

where [Θ,Θ] ∈ Ω2(M,End(E)) is defined by

[Θ,Θ](X,Y ) = Θ(X)Θ(Y )−Θ(Y )Θ(X), X, Y ∈ X(M).

(iv) Conversely, prove that if ∇ is a connection on E and Θ ∈ Ω1(M,End(E))

then ∇1 := ∇ + Θ is another connection. Deduce that the space of

connections on E is (non-canonically) isomorphic to Ω1(M,End(E)).

(v) Use part (iii) to give another proof of Proposition 37.4.

Problem N.2. Let π : E →M denote a vector bundle with connection

∇. Let ∇End denote the induced connection on End(E), and let d∇

and d∇
End

denote the corresponding exterior covariant differentials.

Prove that for Θ ∈ Ωk(M,End(E)) and α ∈ Ω(M,E) we have

d∇(Θ ∧ α) = d∇
End

Θ ∧ α+ (−1)kΘ ∧ d∇α.

Problem N.3. Let π : E → M be a vector bundle of rank n over a

connected manifold M . Fix a Lie subgroup G ⊂ GL(n).

(i) Let us say that a connection ∇ on G is a G-connection if Hol∇(p) ⊂
G, up to conjugation (cf. Corollary 32.16). Prove that this is well-

defined (i.e. independent of the choice of p).

(ii) Fix a G-connection ∇1, and let ∇2 denote any other connection.

Suppose that the difference ∇1 −∇2 actually lies in Ω1(M, hol∇1) ⊂ Recall that hol∇1 is in particular
a submanifold of End(E), so this

assumption makes sense.
Ω1(M,End(E)). Prove that ∇2 is also a G-connection.

Problem N.4. Let (E, g) be a Riemannian vector bundle over M , and

let ∇ be a metric connection. Fix p ∈ M . Prove that the holonomy

group Hol∇(p) is a subgroup of the orthogonal group

O(Ep, gp) := {A ∈ GL(Ep) | gp(A(u), A(v)) = gp(u, v), ∀u, v ∈ Ep} .

Problem N.5. Let (E, g) be a Riemannian vector bundle. Given

u ∈ Ep define u[ ∈ E∗p by

u[(v) := gp(u, v)
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(i) Prove that [ : E → E∗ is a vector bundle isomorphism.

(ii) Let ] : E∗ → E denote the inverse of E (written λ 7→ λ]). Prove

that

g∗(λ, η) := gp(λ
], η]), λ, η ∈ E∗p

defines a Riemannian metric on E∗.

(iii) Prove that (E, g) and (E∗, g∗) are isometric vector bundles in the The vector bundle isomorphisms [
and ] are usually called the musical

isomorphisms.
sense of Definition 37.7.

Problem N.6. Let q ∈ Pinv(n) be an invariant homogeneous poly-

nomial of odd degree 2k + 1. Prove that CWE(q) = 0 for any vector

bundle of rank n.

Problem N.7. Let π : E → M be a vector bundle of rank n. Prove

that the Chern-Weil map

CWE : Pinv(n)→ HdR(M)

is an algebra homomorphism (where the algebra structure on the

left-hand side is just the pointwise product of functions, and on the

right-hand side it is the wedge product, cf. Definition 38.12).

Problem N.8. Suppose that E and F are two vector bundles over a For those of you who are familiar with
Algebraic Topology: the statement

would be more complicated if one

worked with (singular) cohomology
with coefficients in Z, since then one

would need to worry about 2-torsion

elements.

smooth manifold M . Prove the Whitney product formula for the

Pontryagin classes

pk(E ⊕ F ) =

k∑
i=0

pi(E) ∧ pk−i(F ).

Problem N.9. Prove directly that pk(TSm) = 0 for all k > 0. i.e. don’t just quote Proposition
38.19!Remark: This shows that Pontryagin classes alone cannot determine

a vector bundle up to isomorphism (since TSm → Sm is not a trivial

bundle).



Will J. Merry

Problem Sheet O

Problem O.1. let V1, V2 and W be vector spaces. Let ω ∈ Ωh(M,V1)

and let θ ∈ Ωk(M,V2), and let β : V1 × V2 → W be a bilinear map.

Prove that ∧β was defined just before Proposi-

tion 36.5. This problem was meant to

be on Problem Sheet N but I forgot to
include it.

d(ω ∧β θ) = dω ∧β θ + (−1)hω ∧β dθ.

Problem O.2. Let G be a Lie group with Lie algebra g, and suppose

τ is a right action of G on a manifold P . Prove that the map ξ 7→ Zξ

is a Lie algebra homomorphism g→ X(P ).

Problem O.3. Let P be a manifold and g a Lie algebra. Let ω ∈
Ω1(P, g). Prove that the 3-form [[ω, ω], ω] ∈ Ω3(P, g) (defined as in

Example 36.6) is identically zero.

Problem O.4. Let π : P → M denote a principal G-bundle, and let $

denote a connection on P with curvature form Ω. Fix X,Y ∈ X(M),

and let X and Y denote their horizontal lifts. Prove that for any

u ∈ P one has[
X,Y

]
(u)−

[
X,Y

]
(u) = Dτu(e)

(
Ωp(X(u), Y (u))

)
.

Problem O.5. Let π : P → M denote a principal G-bundle, and let

σ : G → GL(V ) denote a smooth effective representation of G. Let

µ := Dσ(e), and suppose f : P → V is an equivariant smooth function.

Prove that for any ξ ∈ g, one has

Zξ(f) + µξ(f) = 0.

Problem O.6. Let π : P → M be a principal G-bundle. Let σ be

a representation of G on a vector space V , and let E = P ×G V

denote the associated vector bundle. Let $ denote a connection on P

and let ∇ denote the associated connection on E. Fix p ∈ M . Then

we can regard Hol$(p) and Hol∇(p) as subgroups of G and GL(V )

respectively, which are defined up to conjugation. Prove that (also up

to conjugation)

σ
(

Hol$(p)
)

= Hol∇(p).

Problem O.7. Let π : E → M be a vector bundle of rank n, and let

Fr(E) → M denote the principal GL(k)-bundle. Then by Proposition

39.10 there is a bijective correspondence between connections ∇ on

E and connections $ on Fr(E). Fix a Lie subgroup G ⊂ GL(kn.

Prove that a connection ∇ on E is a G-connection in the sense of

Problem N.3 if and only if the corresponding connection $ on Fr(E) is

reducible to G in the sense of Definition 42.5.

Problem O.8. Use the principal bundle version of the Bianchi Iden-

tity (i.e. (41.2)) to prove the vector bundle version (Theorem 36.21).

Problem O.9. Use the principal bundle version of the Ambrose–

Singer Holonomy Theorem (Theorem 42.7) to prove the vector bundle

version (Theorem 35.6).
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Bonus Problem(s) for Sheet O

These problem(s) are hard, and are included for enthusiasts only.

Solutions will not be provided.

Problem O.10. Develop the theory of characteristic classes for princi-

pal bundles.



Will J. Merry

Problem Sheet P

Problem P.1. Let ∇ be a connection on M . Let (U, x) and (V, y)

denote two charts on g such that U ∩ V 6= ∅. Let Γkij denote the

Christoffel symbols of x and Γ̃kij denote the Christoffel symbols of y, so

that

∇ ∂

∂xi

(
∂

∂xj

)
= Γkij

∂

∂xk
, ∇ ∂

∂yi

(
∂

∂yj

)
= Γ̃kij

∂

∂yk
.

Investigate the relationship between

Γkij
∣∣
U∩V and Γ̃kij

∣∣
U∩V .

Problem P.2. Let ∇ denote a connection on M , and let d∇ denote

the associated exterior covariant differential. Prove that

T∇ = d∇(id).

Problem P.3. Let ∇ be a torsion-free connection on g with curvature

tensor R∇. Prove that for all X,Y, Z ∈ X(M), one has(
∇XR∇

)
(Y,Z) +

(
∇YR∇

)
(Z,X) +

(
∇ZR∇

)
(X,Y ) = 0.

Problem P.4. Consider Sm equipped with the metric ground from

part 46.13 of Examples 46.13. Prove that the Levi-Civita connection

of ground is the connection introduced in Problem L.3.

Problem P.5. Let g be a Riemannian metric on M , and let ∇ denote

the Levi-Civita connection of M .

(i) Prove that for all X,Y, Z ∈ X(M),

LXg(Y,Z) = LXg(Y,Z) = 〈∇Y (X), Z〉+ 〈Y,∇Z(X)〉 .

(ii) We say that a vector field X is a Killing field if LXg = 0. Prove

that a vector field is a killing field if and only if its maximal flow

consists of local isometries.

Problem P.6. Let ϕ : M → N be an isometric map between Rieman-

nian manifolds. Prove that for p ∈ M the restriction of (·)> to Tϕ(p)N

is the orthogonal projection onto Dϕ(p)(TpM).

Problem P.7. Let ϕ : M → N be a smooth normal covering map

and g is a Riemannian metric on M which is invariant under all deck

transformations. Prove there is a unique Riemannian metric on N

such that ϕ is a Riemannian covering.

Problem P.8. Let M be a smooth manifold and suppose σ is a

smooth transitive left action of a Lie group G on M . Fix p ∈ M

and let H denote the isotropy group at p, so that M ∼= G/H is a ho- cf. Theorem 13.12.

mogeneous space. Let τ : H → GL(TpM) denote the representation of

H on TpM given by cf. Proposition 13.11.

τh(ξ) = Dµh(e)ξ, h ∈ H, ξ ∈ TpM.
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We say that a Riemannian metric g on M is invariant if µh : M →
M is an isometry for every h ∈ G. Prove that there is a bijective

correspondence between invariant Riemannian metrics on M and inner

products on TpM that are invariant under τh for each h ∈ H.

Problem P.9. Let M be a connected manifold and suppose ∇ is a

torsion-free connection on M . Prove that ∇ is the Levi-Civita con-

nection of some Riemannian metric g on M if and only if Hol∇ is

conjugate in GL(m) to a subgroup of O(m).

Problem P.10. Let M be a manifold of dimension two or three.

(i) Prove that the curvature tensor R∇g is completely determined by

the Ricci tensor Ricg.

(ii) Prove that a Riemannian metric g on M is Einstein if and only if g

has constant curvature.

Problem P.11. Let G denote a Lie group, and let g denote the Lie

algebra of G.

(i) Suppose 〈·, ·〉g is an inner product on g. Prove that 〈·, ·〉g induces a Recall (cf. Definition 44.6) that for
for Lie groups we use the letter ρ as

our default notation for a Riemannian
metric.

left-invariant Riemannian metric ρ on G by

ρg(Xξ(g), Xζ(g)) := 〈ξ, ζ〉g , ∀ ξ, ζ ∈ g, g ∈ G,

where Xξ is the left-invariant vector field on G with Xξ(e) = ξ.

Prove moreover that every left-invariant Riemannian metric on G is

of this form.

(ii) Prove that the Riemannian metric ρ associated to 〈·, ·〉g is right-

invariant (and hence bi-invariant) if and only if

〈Adg(ξ),Adg(ζ)〉g = 〈ξ, ζ〉g , ∀ ξ, ζ ∈ g, g ∈ G.

(iii) Assume now that G is connected. Prove that the Riemannian met-

ric ρ associated to 〈·, ·〉g is bi-invariant if and only if adξ is skew-

symmetric with respect to 〈·, ·〉g for all ξ ∈ g.

Problem P.12. Let G denote a Lie group, and let g denote the Lie

algebra of G. Let ∇c denote the connection on G defined by This is the connection on G given by

taking β = c [·, ·] in Problem M.9.

∇cXξ(Xζ) = c [Xξ, Xζ ], ∀ ξ, ζ ∈ g.

Let ρ denote a bi-invariant Riemannian metric on G.

(i) Prove that ∇c is complete for any c ∈ R.

(ii) Prove that ∇c is metric with respect to ρ for all c ∈ R.

(iii) Prove that ∇ 1
2 is torsion-free (and hence is equal to the Levi-Civita

connection of (G, ρ)).

(iv) Prove that ∇ 1
2 is right-invariant in the sense that We already know from Problem M.9

that ∇
1
2 is left-invariant.

(rg)∗(∇
1
2

XY ) = ∇
1
2

(rg)∗X
((rg)∗Y ), ∀X,Y ∈ X(G), ∀ g ∈ G.

(v) Compute the curvature tensor R∇
1
2 of ∇ 1

2 .
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